© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 1 of 172

UNITED STATES DISTRICT COURT
WESTERN DISTRICT OF WASHINGTON

AT SEATTLE
MICROSOFT CORPORATION,) Case No:
a Washington Corporation)
)
Plaintiff,) COMPLAINT FOR PATENT
) INFRINGEMENT
v.)
) JURY DEMAND
SALESFORCE.COM, INC.,)
a Delaware Corporation)
)
Defendants.)
)
)

Plaintiff Microsoft Corporation (“Microsoft”) for its Complaint For Patent Infringement
against Defendant Salesforce.com, Inc. (“Defendant”), alleges as follows:
PARTIES
1. Plaintiff Microsoft Corporation is a Washington corporation having its principal
place of business at One Microsoft Way, Redmond, Washington 98052.
2. Founded in 1975, Microsoft is a worldwide leader in computer software, services,
and solutions for businesses and consumers. Since 1979, Microsoft has been headquartered in

the Seattle, Washington metropolitan area. Microsoft currently employs nearly 40,000 people in

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT-1 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 2 of 172

the Puget Sound area and occupies nearly 8 million square feet of facilities at its Redmond
campus.

3. Microsoft has a long history of technical innovation in the software and hardware
products it develops and distributes. These software products include operating systems for
servers, personal computers, embedded devices, smartphones, PDAs, and other intelligent
devices; “cloud” computing platforms, such as Windows Azure; customer relationship
management software, such as Microsoft Dynamics CRM and Microsoft Dynamics ERP; server
applications for distributed computing environments; various web applications and services;
information worker productivity applications; business solution applications; high-performance
computing applications; and software development tools.

4. On information and belief, Defendant Salesforce.com, Inc. is a United States
corporation organized and existing under the laws of Delaware having a principal place of
business at The Landmark at One Market Street, Suite 300, San Francisco, CA 94105.

5. On information and belief, Defendant is in the business of developing and
providing customer relationship management (CRM) software as a service over the Internet. On
information and belief, Defendant offers this CRM “software as a service” (SAAS) worldwide,
including in the United States, via its websites and servers, which are located throughout the
United States. On information and belief, Defendant does business within the Western District
of Washington.

JURISDICTION AND VENUE

6. This is an action for patent infringement arising under the patent laws of the
United States, Title 35, United States Code.

7. This Court has subject matter jurisdiction pursuant to 28 U.S.C. 8§ 1331 and
1338(a).

8. Venue is proper in this district pursuant to 28 U.S.C. 8§ 1391(b), 1391(c) and

1400(b). On information and belief, Defendant is subject to this Court’s personal jurisdiction,

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT- 2 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 3 of 172

consistent with the principles of due process and the Washington Long Arm Statute, because
Defendant offers its services for sale in the Western District of Washington, has transacted
business in this District, and/or has committed and/or induced acts of patent infringement in this
District.

PATENT INFRINGEMENT COUNTS

0. Microsoft is the owner of all right, title, and interest in U.S. Patent Nos.
7,251,653; 5,742,768; 5,644,737; 6,263,352; 6,122,558; 6,542,164; 6,281,879; 845,077; and
5,941,947 (collectively, “the Microsoft patents-in-suit”), which the Defendant is infringing
and/or inducing others to infringe by, among other things, making, using, making available for
another’s use, offering to license or licensing in the United States, offering to sell or selling in
the United States, or importing into the United States, products or processes that practice
inventions claimed in the Microsoft patents-in-suit.

10. The Defendant has profited through infringement of the Microsoft patents-in-suit.
As a result of the Defendant’s unlawful infringement of the Microsoft patents-in-suit, Microsoft
has suffered and will continue to suffer damage. Microsoft is entitled to recover from the
Defendant the damages suffered by Microsoft as a result of the Defendant’s unlawful acts.

11. On information and belief, Defendant’s infringement of the Microsoft patents-in-
suit is willful and deliberate, entitling Microsoft to enhanced damages and reasonable attorney
fees and costs. Microsoft has provided Defendant notice of its infringement through, inter alia,
service of this complaint and prior communications between the parties.

12. On information and belief, the Defendant intends to continue its unlawful
infringing activity, and Microsoft continues to and will continue to suffer irreparable harm—for
which there is no adequate remedy at law—from such unlawful infringing activity unless

Defendant is enjoined by this Court.

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT- 3 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 4 of 172

COUNT I
INFRINGEMENT OF U.S. PATENT NO. 7,251,653

13. Microsoft realleges and incorporates by reference the allegations set forth in
paragraphs 1-12.

14, Microsoft is the owner of all right, title, and interest in U.S. Patent No. 7,251,653
(“the ’653 patent”), entitled “Method and system for mapping between logical data and physical
data,” duly and properly issued by the U.S. Patent and Trademark Office on July 31, 2007. A
copy of the *653 patent is attached as Exhibit A.

15. The Defendant has been and/or is directly infringing the *653 patent by, among
other things, making, using, offering to license or licensing in the United States, offering to sell
or selling in the United States, products and/or services, including various web applications and
services and the hardware and software running these applications and services, that embody or
incorporate, or the operation of which otherwise practices, one or more claims of the *653 patent.

COUNT 11
INFRINGEMENT OF U.S. PATENT NO. 5,742,768

16. Microsoft realleges and incorporates by reference the allegations set forth in
paragraphs 1-12.

17. Microsoft is the owner of all right, title, and interest in U.S. Patent No. 5,742,768
(“the *768 patent”), entitled “System and method for providing and displaying a web page
having an embedded menu,” duly and properly issued by the U.S. Patent and Trademark Office
on April 21, 1998. A copy of the 768 patent is attached as Exhibit B.

18. The Defendant has been and/or is directly infringing and/or inducing others to
infringe the *768 patent by, among other things, making, using, making available for another’s
use, offering to license or licensing in the United States, offering to sell or selling in the United

States, products and/or services, including various web applications and services and the

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT-4 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 5 of 172

hardware and software running these applications and services, that embody or incorporate, or
the operation of which otherwise practices, one or more claims of the 768 patent.
COUNT 111
INFRINGEMENT OF U.S. PATENT NO. 5,644,737

19. Microsoft realleges and incorporates by reference the allegations set forth in
paragraphs 1-12.

20. Microsoft is the owner of all right, title, and interest in U.S. Patent No. 5,644,737
(“the *737 patent”), entitled “Method and system for stacking toolbars in a computer display,”
duly and properly issued by the U.S. Patent and Trademark Office on July 1, 1997. A copy of
the *737 patent is attached as Exhibit C.

21. The Defendant has been and/or is directly infringing and/or inducing others to
infringe the *737 patent by, among other things, making, using, making available for another’s
use, offering to license or licensing in the United States, offering to sell or selling in the United
States, or importing into the United States, products and/or services, including various web
applications and services and the hardware and software running these applications and services,
that embody or incorporate, or the operation of which otherwise practices, one or more claims of
the 737 patent.

COUNT IV
INFRINGEMENT OF U.S. PATENT NO. 6,263,352

22. Microsoft realleges and incorporates by reference the allegations set forth in
paragraphs 1-12.

23. Microsoft is the owner of all right, title, and interest in U.S. Patent No. 6,263,352
(“the 352 patent™), entitled “Automated web site creation using template driven generation of
active server page applications,” duly and properly issued by the U.S. Patent and Trademark

Office on July 17, 2001. A copy of the *352 patent is attached as Exhibit D.

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT-5 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 6 of 172

24. The Defendant has been and/or is directly infringing the *352 patent by, among
other things, making, using, offering to license or licensing in the United States, offering to sell
or selling in the United States, products and/or services, including various web applications and
services and the hardware and software running these applications and services, that embody or

incorporate, or the operation of which otherwise practices, one or more claims of the *352 patent.

COUNT V
INFRINGEMENT OF U.S. PATENT NO. 6,122,558

25. Microsoft realleges and incorporates by reference the allegations set forth in
paragraphs 1-12.

26. Microsoft is the owner of all right, title, and interest in U.S. Patent No. 6,122,558
(“the ’558 patent”), entitled “Aggregation of system settings into objects,” duly and properly
issued by the U.S. Patent and Trademark Office on September 19, 2000. A copy of the *558
patent is attached as Exhibit E.

27. The Defendant has been and/or is directly infringing and/or inducing others to
infringe the *558 patent by, among other things, making, using, making available for another’s
use, offering to license or licensing in the United States, offering to sell or selling in the United
States, products and/or services, including various web applications and services and the
hardware and software running these applications and services, that embody or incorporate, or

the operation of which otherwise practices, one or more claims of the ’558 patent.

COUNT VI
INFRINGEMENT OF U.S. PATENT NO. 6,542,164

28. Microsoft realleges and incorporates by reference the allegations set forth in
paragraphs 1-12.
29. Microsoft is the owner of all right, title, and interest in U.S. Patent No. 6,542,164

(“the 164 patent”), entitled “Timing and velocity control for displaying graphical information,”

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT- 6 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 7 of 172

duly and properly issued by the U.S. Patent and Trademark Office on April 1, 2003. A copy of
the *164 patent is attached as Exhibit F.

30. The Defendant has been and/or is directly infringing and/or inducing others to
infringe the *164 patent by, among other things, making, using, offering to license or licensing in
the United States, offering to sell or selling in the United States, products and/or services,
including various web applications and services and the hardware and software running these
applications and services, that embody or incorporate, or the operation of which otherwise

practices, one or more claims of the *164 patent.

COUNT VI
INFRINGEMENT OF U.S. PATENT NO. 6,281,879

31. Microsoft realleges and incorporates by reference the allegations set forth in
paragraphs 1-12.

32. Microsoft is the owner of all right, title, and interest in U.S. Patent No. 6,281,879
(“the 879 patent”), entitled “Timing and velocity control for displaying graphical information,”
duly and properly issued by the U.S. Patent and Trademark Office on August 28, 2001. A copy
of the ’879 patent is attached as Exhibit G.

33. The Defendant has been and/or is directly infringing and/or inducing others to
infringe the *879 patent by, among other things, making, using, making available for another’s
use, offering to license or licensing in the United States, offering to sell or selling in the United
States, products and/or services, including various web applications and services and the
hardware and software running these applications and services, that embody or incorporate, or

the operation of which otherwise practices, one or more claims of the ’879 patent.

COUNT Vil
INFRINGEMENT OF U.S. PATENT NO. 5,845,077

34, Microsoft realleges and incorporates by reference the allegations set forth in

paragraphs 1-12.

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT- 7 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 8 of 172

35. Microsoft is the owner of all right, title, and interest in U.S. Patent No. 5,845,077
(“the 077 patent”), entitled “Method and system for identifying and obtaining computer
software from a remote computer,” duly and properly issued by the U.S. Patent and Trademark
Office on December, 1, 1998. A copy of the *077 patent is attached as Exhibit H.

36. The Defendant has been and/or is directly infringing and/or inducing others to
infringe the 077 patent by, among other things, making, using, making available for another’s
use, offering to license or licensing in the United States, offering to sell or selling in the United
States, products and/or services, including various web applications and services and the
hardware and software running these applications and services, that embody or incorporate, or

the operation of which otherwise practices, one or more claims of the 077 patent.

COUNT IX
INFRINGEMENT OF U.S. PATENT NO. 5,941,947

37. Microsoft realleges and incorporates by reference the allegations set forth in
paragraphs 1-12.

38. Microsoft is the owner of all right, title, and interest in U.S. Patent No. 5,941,947
(“the *947 patent”), entitled “System and method for controlling access to data entities in a
computer network,” duly and properly issued by the U.S. Patent and Trademark Office on
August 24, 1999. A copy of the "947 patent is attached as Exhibit I.

39. The Defendant has been and/or is directly infringing the *947 patent by, among
other things, making, using, making available for another’s use, offering to license or licensing in
the United States, offering to sell or selling in the United States, products and/or services,
including various web applications and services and the hardware and software running these
applications and services, that embody or incorporate, or the operation of which otherwise

practices, one or more claims of the 947 patent.

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT- 8 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 9 of 172

DEMAND FOR JURY TRIAL

40. Pursuant to Rule 38(b) of the Federal Rules of Civil Procedure, Microsoft
respectfully requests a trial by jury on all issues properly triable by jury.

PRAYER FOR RELIEF

WHEREFORE, Microsoft prays for relief as follows:

A For a judgment declaring that Defendant has infringed at least one claim of each
of the Microsoft patents-in-suit;

B. For a judgment awarding Microsoft compensatory damages as a result of
Defendant’s infringement of the Microsoft patents-in-suit, together with interest and costs, and in
no event less than a reasonable royalty;

C. For a judgment declaring that Defendant’s infringement of the Microsoft patents-
in-suit has been willful and deliberate;

D. For a judgment awarding Microsoft treble damages and pre-judgment interest
under 35 U.S.C. § 284 as a result of Defendant’s willful and deliberate infringement of the
Microsoft patents-in-suit;

E. For a judgment declaring that this case is exceptional and awarding Microsoft its
expenses, costs, and attorneys fees in accordance with 35 U.S.C. 8§ 284 and 285 and Rule 54(d)
of the Federal Rules of Civil Procedure;

F. For a grant of preliminary and permanent injunctions pursuant to 35 U.S.C. § 283,
enjoining Defendant from further acts of infringement; and

G. For such other and further relief as the Court deems just and proper.

Dated: May 18, 2010 By: /s/ David E. Killough
David E. Killough

T. ANDREW CULBERT (SBN 35925)
andycu@microsoft.com

DAVID E. KILLOUGH (SBN 40185)
davkill@microsoft.com

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT-9 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

© 00 ~N o o b~ w NP

NN N NN RN R R R R R R R R R
o U B~ W N FBP O © ©® N o o~ W N Lk O

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 10 of 172

MICROSOFT CORPORATION
1 Microsoft Way

Redmond, Washington 98052
Telephone: 425-882-8080
Facsimile: 425-869-1327

OF COUNSEL:

DAVID T. PRITIKIN
dpritikin@sidley.com
RICHARD A. CEDEROTH
rcederoth@sidley.com
DOUGLAS I. LEWIS
dilewis@sidley.com
JOHN W. MCBRIDE
jwmcbride@sidley.com
SIDLEY AUSTIN LLP
One South Dearborn
Chicago, IL 60603
Telephone: 312-853-7000
Facsimile: 312-853-7036

Attorneys for Plaintiff Microsoft Corp.

COMPLAINT FOR PATENT Microsoft Corporation
INFRINGEMENT- 10 1 Microsoft Way
Redmond, Washington 98052
Telephone: 425-882-8080

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 11 of 172

Exhibit A

Case 2:10-cv-00825-JLR Docume"ll

6 ORI

US007251653B2
a2 United States Patent (10) Patent No.: US 7,251,653 B2
Huang et al. 45) Date of Patent: Jul. 31, 2007
(54) METHOD AND SYSTEM FOR MAPPING 6,457,003 BL* 9/2002 Gajdaet al.ccccueuenn.e. 707/4
BETWEEN LOGICAL DATA AND PHYSICAL 6,490,590 B1* 12/2002 Fink 707/100
DATA 6,687,704 B1* 2/2004 Russell 707/100
6,711,582 B2* 3/2004 Aldridge et al. 707/103 Y
(75) Inventors: Chih-Jen Huang, Kirkland, WA (US); 7,062,502 B1* 6/2006 Keslerccococeveeeeeeenn. 707/102
Steven Sheldon, San Diego, CA (US);
Robert Turner, Seattle, WA (US); OTHER PUBLICATIONS
Patrick Conlan, Redmond, WA (US) Tolkin, Steven, “Aggregation Everywhere: Data Reduction and
Transformation in the Phoenix Data Warehouse,” Nov. 1999 (8
(73) Assignee: Microsoft Corporation, Redmond, WA pages).
(us) Michalk, Dale, “The DataSet Object: At Your Web Service,” Copy-
right 2001-2003, Fawcette Technical Publications, (7 pages), http://
(*) Notice: Subject to any disclaimer, the term of this W"Vt‘_""f;lzi"’;?n}f;;fg ’;mllftr)la%/ 2001__1__11/magazine/columns/inte-
: : gratio ic efault)pf.aspx.
%atserét lls Si)éltsnged490; gdjuswd under 33 NET Framework Class Library, DataSet Class, Copyright 2004
e Y ays. Microsoft Corporation (4 pages) http://msdn.microsoft.com/library/
en-us/cpref/html/frlrfSystemDataDataSetClassTopic.
(21) Appl. No.: 10/880,888 asp? frame—
p?trame=true.
(22) Filed: Jun. 30, 2004 * cited by examiner
(65) Prior Publication Data Primary Examiner—IJeffrey Gafﬁn
Assistant Examiner—Jacques Veillard
US 2006/0004750 Al Jan. 5, 2006 (74) Attorney, Agent, or Firm—Perkins Coie LLP
(51) Int. ClL (57) ABSTRACT
GO6F 17/30 (2006.01)
GOGF 7/00 (2006.01) The mapping system maps a physical table of a database to
(52) US.Cl .covievivivees 707/6; 707/100; 707/203 a logical table representing a logical view of the database
(58) Field of Classification Search 707/176, that integrates standard columns and custom columns. The
707/100-102, 103 R, 104.1, 201, 203; 717/137, physical table includes a standard table with standard col-
o) 717/141 umns and a custom table with custom columns. The custom
See application file for complete search history. table may be implemented as a pivot table. The mapping
(56) References Cited system provides a map between standard and custom col-

U.S. PATENT DOCUMENTS

umns and logical columns. The physical table may include
multiple standard tables. The mapping system allows for
individual standard tables to be updated, rather than updat-

5,734,887 A * 3/1998 Kingberg et al. 707/4 .
5873096 A * 21999 Lim et al. 0701 ing all the columns across all the standard tables for a row.
5,937,402 A * 8/1999 Panditccccoceeeeeiieiannnnnn. 707/4
6,295,533 B2* 9/2001 Cohencccoovvvvvveerennnnn. 707/5 27 Claims, 9 Drawing Sheets
logical
column
121 122 123
120
logical table
pivot table
standard standard custom pad
table 1 table N table ,’/ key
custom column name
110
physical table custom column data
LR 112 113 ~
standard custom h
114
columns columns

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 13 of 172

US 7,251,653 B2

Sheet 1 of 9

Jul. 31, 2007

U.S. Patent

141

€Jep UWmNjod Wojsno

WEl UWmMjod woisnd

”~

SUKIN[0d
TIOISND

% £l

["OIA

cll

SUWmM|od
piepueis

ﬁ 145

o1qes JearsAyd
oLl

Aoy e oqe) N 91q®1 [91qe)
e uIojsno plepue)s piepue;s
o[qe} joard
oo 21q®1 [89180]
oct
40 443 ¥4} a
Uwmjoo
Jeo130]

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 14 of 172

US 7,251,653 B2

Sheet 2 of 9

Jul. 31, 2007

U.S. Patent

0€e

pannbal ST UWM|09 WoISNo
2d£y v1ep Mmoo WoIsNo
£10391B0 UWIN|OD WO)STO
QWIRU UWIN[0Y WOISTIO

I UWn[os wojsno

2[qE) WIN[0D WO)SNO

44

ONJEA UM]0D

¢ OIA

) din

344

ummjod woisn %OM

a1qe1 10A1d Nse)
€ig

2JEp pUS YSE}
a1ep He)s yse)
QuIeu Mse}

() ain 1afoxd

ain yse

onJeA UWmjod

444
1800 POIBUIISO JSE)
uondLosap yse}
din yse
W 91qe) paepuess yse)
cle

(B Ain

UUIN[00 WoIsnd A9y

a1qe) yoaid yoofoxd

juejsisse 109foad
Io8euewr yoloid

I 9[qe} piepue;s Yse)
Lie

ain sloxd

ayep pus yosloxd
91ep Jeys josford
awreu yoofoxd

din 1sload

N 2]qe1 piepue)s 10ofoxd

1 21q®1 pepuels 309[oxd

0ce

oLe

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 15 of 172

US 7,251,653 B2

Sheet 3 of 9

Jul. 31, 2007

U.S. Patent

& O

0ce
zee Y ou 1X9) sme)s sme)s 19loid
12 Y soK 1X9) adfy ad£} 100foid
pamnbar od£; eyep ouwieu din uumjos
: wojsnd

9]qE) UWNJOd WOISNO

oLe
ouop | smyejs yoofoxd 01 [~_ €I€
q ad£y yoaloxd 02 ~_ ?2it
v ad£y y09foxd 0 I~ LIt
anjea dIn uwnjod Ko
uwnjoo wo)sno
91qe) j0A1d 109lo1d

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 16 of 172

US 7,251,653 B2

Sheet 4 of 9

Jul. 31, 2007

U.S. Patent

Ovy

uwnjoo A3y 10a1d
uwnjoo sweu j0ard
uwmnjoo anjea joard
swreu 9[qe) joard

arIn 1qe Joard

eiEpRIOW 9[qe) JoAld

oey

v OIA

0cy

oLy

G11) ain 21qes yoard

swreu a1qe) rearsAyd

(314) ain 219®) prepuels
ureu EE$~OO

[eoisAyd uwumjoo [eo130]
2 [eas uwnjoo [es130]
K2y s1 uwmjod 1e2130]

(1) ain eo1do]
QWEBU UWN|od [B2130]

dlIN uwmjod [eo130]

uonduosap [e0130]
oweu [ed130]

din 219es eorsAyd

BJBPERIOW 9[qB) PIEPUE]S

BJEPRIOW UWM[od [ed150]

dew [eo1s£yd-03-[eo130]

dain 1es1doj

BlEpRIOW 2]q®) [€9130]

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 17 of 172

US 7,251,653 B2

Sheet 5 of 9

Jul. 31, 2007

U.S. Patent

§ OIA

€Ls 45 LLS
aqel
0lLs
s eorsAyd asEqEIEp
19foxd
91qe) WOISND Ny 91qe) 199l01d I 21qe3 102l01d
100loxd
G2s ¢cs X4°]
ojepdn
ESMEQ (a19¥1 jaseiep 0cs
: [eo1807) Ioke] $SQ00E BIRP
0) [e0180] 1o m.va 2)B21d
uLIojsuen
LES 9€4 GES £ES [4%°] LES
s9[q®) so[qel
ooen Ioyoen sajepdn TOPED Yorn - e 0€S
081X oyoel} pp IoT) o[pp1u
108 B)Rp jasejep
[44°) LS
so|qe}
190En 108N oS
L1
josejep

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 18 of 172

U.S. Patent Jul. 31, 2007 Sheet 6 of 9 US 7,251,653 B2

C create dataset)

> 601

select next logical table

done)

all already selected

select next logical column

608

populate logical table all already selected

605
check result set
606
N
Y 607

add logical column
to logical table

FIG. 6

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 19 of 172

U.S. Patent Jul. 31, 2007 Sheet 7 of 9 US 7,251,653 B2

Ccheck result set) logical column

701
Y custom column N
704 \/ 702
custom table N N standard table

in result set

in result set

standard column
in result set

return
(not found)

custom column
in result set

Y
C o)

FIG. 7

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 20 of 172

U.S. Patent Jul. 31, 2007 Sheet 8 of 9 US 7,251,653 B2
populate ,
logical table
- 801
select next row of physical
table

return)

all already selected

select next logical column

all already selected

805

retrieve cell from results set

806

add to dataset

FIG. 8

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 21 of 172

U.S. Patent Jul. 31, 2007 Sheet 9 of 9 US 7,251,653 B2

transform L2P
update (delta)

> 901

select next entry

return)

all already selected

retrieve row from dataset

=

904

select next logical column

all already selected

907 908

create custom update add column to row update

FIG. 9

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 22 of 172

US 7,251,653 B2

1

METHOD AND SYSTEM FOR MAPPING
BETWEEN LOGICAL DATA AND PHYSICAL
DATA

TECHNICAL FIELD

The described technology relates generally to mapping
between logical data and physical data and including to
mapping when the physical data includes custom data.

BACKGROUND

Many applications use a database to store their data. The
database for an application is typically designed by the
developer of the application to include a table for each entity
used by the application. Each entity table contains a row for
each specific entity and various columns for storing prop-
erties of the entity. For example, in the case of a project
management application, the entities may include a project,
a task, an assignment, or a resource, and a specific entity is
a specific project, a specific task, a specific assignment, or a
specific resource. The project table may contain a project
identifier column, a project name column, a project start date
column, and so on. The project identifier column contains
the unique identifier of a specific project and is referred to
as a “unique key” of the project table. Each row of the
project table corresponds to a specific project, and the cells
of a row contain the data of that specific project for the
columns. A task table may contain a task identifier column,
project identifier column, task name column, and so on. The
task identifier column contains the unique identifiers of
specific tasks. The project identifier column contains the
project identifier of the specific project with which the task
is associated and is referred to as a “foreign key.” Each row
of the task table corresponds to a specific task.

Complex applications may have many hundreds of prop-
erties associated with an entity. This presents problems for
databases that limit the number of columns of a table. For
example, some databases may limit the number of columns
to 128 or 256. To overcome this problem, applications may
store data for an entity in multiple database tables. For
example, if an application needs 300 columns to represent
the properties of an entity and the limit on the number of
columns of a table is 128, then the developer of the appli-
cation may divide the 300 columns across three tables with
101 columns in each table. Each table may contain a unique
key column and 100 property columns. When the properties
of a specific entity is added to the database, the application
generates a unique identifier for that specific entity and adds
a row to each of the three tables with its unique key set to
that unique identifier. The combination of the rows from the
three tables with the same unique identifier corresponds to
the columns for the entity. To access the data for that specific
entity, the application may join the three tables. As a result,
at least for viewing purposes, the join results in a logical data
view that contains the unique identifier column and the 300
property columns.

Even though these complex applications have many prop-
erties associated with an entity, referred to as “standard”
properties or columns, users may need to have additional
properties associated with an entity. For example, in the case
of a project management application, a user may need to
track project type and project status, which may have no
corresponding standard column. To assist users in defining
their own properties for an entity, applications may allow
custom columns to be defined. For example, a user may
define a type custom column and a status custom column to

20

25

30

35

40

45

50

55

60

65

2

track the type and status of projects. The custom column can
be considered just one more column associated with an
entity.

Although custom columns could be supported by modi-
fying the schema of the database, such modifications can be
time-consuming and error-prone, especially if performed by
the users of the application. To allow users the flexibility to
create custom columns without modifying the schema of the
database, some applications use a “pivot” table to store
information relating to custom columns. A pivot table for an
entity would typically include a key column, a custom
column name column, and a data column. Whenever data for
a custom column is to be added for a specific entity, a new
row is added to the pivot table that contains the unique key
associated with that specific entity, the name of the custom
column, and the data.

The use of pivot tables to represent custom columns may
make it difficult for a user to retrieve all the properties
associated with a specific entity. In particular, although a
join can be used to combine the data of standard tables, the
data of the custom columns cannot be joined so easily.
Moreover, even if with only standard tables are joined to
provide a logical data view, some databases may not allow
updates via the logical data view. It would be desirable to
provide a logical data view that would integrate both stan-
dard columns and custom columns and would allow for the
updating of data of both standard columns and custom
columns via a logical data view.

SUMMARY

A method and system for providing a logical view of data
that combines standard and custom fields is provided. The
system creates a logical view of physical data that includes
standard data of standard fields and custom data of custom
fields. The system has a map that maps logical fields of
logical data to the corresponding standard fields or custom
fields of the physical data. The system uses the map to
generate the logical view. When the custom fields are
represented by pivot data, the system converts the pivot data
so that it appears as a logical field. The system may allow the
updating of data of a custom field via the logical view and
a standard field when the standard fields are represented as
standard columns of multiple standard database tables.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram that illustrates a physical table
of a database representing an entity and a corresponding
logical table in one embodiment.

FIG. 2 is a block diagram that illustrates physical tables
for a project management application in one embodiment.

FIG. 3 is a block diagram that illustrates sample data of
a project pivot table and custom column table in one
embodiment.

FIG. 4 is a block diagram that illustrates a schema for a
map of logical data to physical data in one embodiment.

FIG. 5 is a block diagram illustrating the interaction of
components of the mapping system in one embodiment.

FIG. 6 is a flow diagram that illustrates the create dataset
object component in one embodiment.

FIG. 7 is a flow diagram that illustrates the processing of
the check result set component in one embodiment.

FIG. 8 is a flow diagram that illustrates the processing of
the populate logical table component in one embodiment.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 23 of 172

US 7,251,653 B2

3

FIG. 9 is a flow diagram that illustrates the processing of
the transform logical to physical update component in one
embodiment.

DETAILED DESCRIPTION

A method and system for providing a view of data that
combines standard and custom data is provided. In one
embodiment, a mapping system provides a map between
physical fields of physical data and logical fields of logical
data. The physical fields may include standard fields and
custom fields. The custom fields may be represented using
pivot data. To create a view of the physical data, the physical
data is queried to generate a result set that includes custom
fields represented using pivot data and standard fields. The
mapping system uses the map to generate a logical data view
that integrates standard and custom fields in a way that hides
from a user or client the distinction between standard and
custom field. In addition, the mapping system tracks updates
to the logical data and then updates the corresponding
physical data. The mapping system may keep a log of the
updates that are made to the logical data. The mapping
system uses the map to identify which standard fields and
custom fields need to be updated and updates them accord-
ingly. In this way, the distinction between standard fields and
custom fields is hidden from the logical data view and
updates made to the logical data view can be reflected in the
physical data.

In one embodiment, the mapping system maps a physical
table of a database to a logical table representing a logical
view that integrates standard columns and custom columns.
The physical table includes a standard table with standard
columns and a custom table with custom columns. The
custom table may be implemented as a pivot table. The
mapping system provides a map between standard and
custom columns and logical columns. The map may include
for each logical column of the logical table an indication of
the corresponding standard column and standard table or an
indication of the corresponding custom column. The pivot
table may include a key column, custom column name
column, and data column. The set of unique custom column
names within the custom column name column of the pivot
table represents all the custom columns that have been
defined for the physical table. In one embodiment, the name
of the pivot table and its column names may be hard-coded
into the mapping system. Alternatively, the map may map
each logical column that corresponds to a custom column to
the name of the corresponding pivot table and the names of
the columns within the pivot table corresponding to the key,
custom column name, and data columns. The mapping
system may represent a logical table as a dataset object that
defines a logical view and methods for accessing the logical
data. (See, D. Michalk, “The DataSet Object: At Your Web
Service,” XML & Web Services Magazine, October/Novem-
ber 2001, which is hereby incorporated by reference.) The
mapping system may add functionality to the dataset object
to track changes that are made to the data within the dataset
object. When the changes made to the logical table are to be
committed to the physical table, the mapping system pro-
cesses each change by mapping the updated columns of the
logical table to the corresponding physical columns of the
physical table. The updated columns may correspond to
standard columns or custom columns. If an updated column
corresponds to a custom column, then the mapping system
updates the corresponding pivot table as appropriate.

In one embodiment, the physical table may include mul-
tiple standard tables, for example, if the database limits the

20

25

30

35

40

45

50

55

60

65

4

number of columns within a table to less than the number
needed to represent all the properties of an entity. The
mapping system allows for individual standard tables to be
updated, rather than updating all the columns across all the
standard tables for a row. Prior techniques for updating a
view that included a join of multiple tables may have
required that all the columns of all the tables be updated
even when only a single column of the view is updated. The
mapping system may also define a logical table to contain
logical columns corresponding to different physical tables.
For example, a logical table may contain a row for each task
with logical columns corresponding to various physical
columns of the task physical table and a physical column for
the project physical table.

FIG. 1 is a block diagram that illustrates a physical table
of a database representing an entity and a corresponding
logical table in one embodiment. The physical table 110
includes standard tables 111-112 and a custom table 113.
Each standard table includes a unique key standard column
and other standard columns that each correspond to a
property of the entity represented by the physical table. The
custom table is implemented as a pivot table 114. The
custom table, however, logically includes a unique key
column and each custom column. A row of the physical table
for a specific entity, identified by a unique identifier, corre-
sponds to a join of the standard tables and the custom table.
The mapping system generates the logical table 120, which
may be represented as a dataset object, corresponding to the
physical table by creating a logical join of the standard tables
and the custom table. The join with the custom table is
logical in the sense that the custom table is a logical
representation of the pivot table. The mapping system con-
verts the rows of the pivot table to the corresponding column
of the custom table to effect the logical join.

FIG. 2 is a block diagram that illustrates physical tables
for a project management application in one embodiment.
The physical tables include a project table 210 correspond-
ing to a project entity and a task table 220 corresponding to
a task entity. The project table includes project standard
tables 211-212 and project pivot table 213. The task table
includes task standard table 221-222 and task pivot table
223. The project standard tables contain a unique project
identifier column and various standard columns relating to
project properties. The project pivot table contains an entry
for each cell of the project table that contains a custom value.
The project pivot table includes a key column that contains
the project unique identifier, the custom column unique
identifier column, and a data column. The custom column
unique identifier column is a reference to a row in a custom
column table 230. The custom column table contains a row
for each custom column that has been defined. Each row
contains name, category, and data type of a custom column.
The task standard tables contain a task unique identifier
column and various standard columns relating to task prop-
erties. The task pivot table contains an entry for each cell of
the task table in a manner similar to the project pivot table.

FIG. 3 is a block diagram that illustrates sample data of
a project custom table represented as a project pivot table
and custom column table in one embodiment. The custom
column table 320 includes rows 321-322. Row 321 defines
the custom column “project” with a data type of “text” and
an indication that the column is required to have a data
value. Row 322 defines the custom column “status” with the
data type of “text” and an indication that the column is not
required to have a data value. The project pivot table 310
includes rows 311-313. Row 311 corresponds to the cell for
the “type” custom column for project 10. This row indicates

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 24 of 172

US 7,251,653 B2

5

that project 10 has a type of “A.” Row 312 corresponds to
the cell for the “type” custom column for project 20. This
row indicates that project 20 has a type of “B.” Row 313
corresponds to the cell for the “status” custom column for
project 10. This row indicates that project 10 has a status of
“done.” The custom column unique identifier column of the
project pivot table contains a foreign key to the custom
column table. The custom column table thus contains a row
for each custom column describing its characteristics.

FIG. 4 is a block diagram that illustrates a schema for a
map of logical data to physical data in one embodiment. The
schema defines logical table metadata 410, logical column
metadata 420, standard table metadata 430, and pivot table
metadata 440. The logical table metadata contains a row for
each logical table corresponding to a physical table. In one
embodiment, a logical table may be generated from multiple
physical tables. The logical table metadata contains logical
unique identifier, name, and description columns. The logi-
cal column metadata contains a row for each logical column.
It includes a logical column unique identifier, name, logical
table unique identifier (as a foreign key), is key, is calcu-
lated, physical column name, standard table unique identifier
(as a foreign key), and pivot table unique identifier (as a
foreign key) columns. The logical table unique identifier
column maps the logical column to the corresponding logi-
cal table in which it is contained. The standard table unique
identifier column maps the logical column to the corre-
sponding standard table. The pivot table unique identifier
maps the logical column to the corresponding row of the
pivot table. The physical column name contains the column
name associated with either the standard table or the pivot
table. The standard table metadata has one row for each
standard table and includes a physical table unique identifier
and name column. The name identifies the name of the
physical table. The pivot table metadata includes a row for
each custom column and contains a pivot table unique
identifier, name, value column, name column, and key
column columns. The table name column specifies the name
of the pivot table. The value column identifies the name of
the column of the pivot table that contains the data value.
The name column identifies the column of the pivot table
that contains the name of the custom column. The key
column identifies the column of the pivot that contains the
key of the corresponding physical table.

FIG. 5 is a block diagram illustrating the interaction of
components of the mapping system in one embodiment. The
figure illustrates a database layer 510, a data access layer
520, a middle tier 530, and a client 540. The database may
be connected to the data access layer via a network, and the
client may be connected to the middle tier via a network. The
database includes a project physical table comprising project
standard tables 511-512 and a project custom table 513.
When a result set is generated for the project physical table,
it is passed to the create dataset component 521 of the data
access layer. If a network connects the database and the data
access layer, then data sent via the network would typically
need to be serialized and de-serialized. The create dataset
component uses the logical-to-physical map to create a
dataset object 522 that represents the logical table. The
dataset object is passed to the add tracker component 531 of
the middle tier. The add tracker component adds tracker
tables to the dataset object 532 and adds tracker object 533.
The tracker object is responsible for tracking each update to
the logical table of the dataset objects and storing an
indication of the update in the tracker tables. The dataset
object is then serialized (when the middle tier and client are
connected via a network) and provided to the client. The

20

25

30

35

40

45

50

55

60

65

6

client de-serializes the dataset object and instantiates dataset
object 541 and tracker object 542. The client accesses the
dataset object to view and update to the logical tables of the
dataset object. The tracker object logs all updates, such as
updating a cell, adding a row, or deleting a row. Upon
completion, the client serializes the dataset object and pro-
vides it to the middle tier. The middle tier de-serializes the
dataset object and instantiates a dataset object 536 and
tracker object 537. The extract updates component extracts
the update information from the tracker tables and provides
that information to the transform logical to physical update
component 525 of the data access layer. The transform
logical to physical update component uses the logical-to-
physical map to generate updates to the project physical
table corresponding to the updates made by the client to the
logical table. The component may generate a series of SQL
statements.

The computing device on which the mapping system is
implemented may include a central processing unit,
memory, input devices (e.g., keyboard and pointing
devices), output devices (e.g., display devices), and storage
devices (e.g., disk drives). The memory and storage devices
are computer-readable media that may contain instructions
that implement the mapping system. In addition, the data
structures and message structures may be stored or trans-
mitted via a data transmission medium, such as a signal on
a communications link. Various communications links may
be used, such as the Internet, a local area network, a wide
area network, or a point-to-point dial-up connection.

FIG. 5 illustrates an example of a suitable operating
environment in which the mapping system may be imple-
mented. The operating environment is only one example of
a suitable operating environment and is not intended to
suggest any limitation as to the scope of use or functionality
of the mapping system. Other well-known computing sys-
tems, environments, and configurations that may be suitable
for use include personal computers, server computers, hand-
held or laptop devices, multiprocessor systems, micropro-
cessor-based systems, programmable consumer electronics,
network PCs, minicomputers, mainframe computers, dis-
tributed computing environments that include any of the
above systems or devices, and the like.

The mapping system may be described in the general
context of computer-executable instructions, such as pro-
gram modules, executed by one or more computers or other
devices. Generally, program modules include routines, pro-
grams, objects, components, data structures, etc. that per-
form particular tasks or implement particular abstract data
types. Typically, the functionality of the program modules
may be combined or distributed as desired in various
embodiments.

FIG. 6 is a flow diagram that illustrates the create dataset
object component in one embodiment. The component is
passed a result set and creates a dataset object representing
a logical view of the result set. In this embodiment, the
component selects each logical table and logical column of
the logical table and adds a column to that logical table if the
corresponding physical column is represented in the result
set. One skilled in the art will appreciate that selecting each
of the physical columns of the result set can alternatively
identify the logical columns for the logical tables. In block
601, the component selects the next logical table that is
defined in the logical-to-physical map. In decision block
602, if all the logical tables have already been selected, then
the component completes, else the component continues at
block 603. In block 603, the component selects the next
logical column of the selected logical table. In decision

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 25 of 172

US 7,251,653 B2

7

block 604, if all the logical columns of the selected logical
table have already been selected, then the component con-
tinues at block 608, else the component continues at block
605. In block 605, the component invokes the check result
set component to determine whether the physical column
corresponding to the selected logical column is in the result
set. In decision block 606, if the physical column is in the
result set, then the component continues at block 607, else
the component loops to block 603 to select the next logical
column. In block 607, the component adds the selected
logical column to logical table and then loops to block 603
to select the next logical column. In block 608, the compo-
nent invokes the populate logical table component to add
rows to the logical table that are generated from the result set
and loops to block 601 to select the next logical table.

FIG. 7 is a flow diagram that illustrates the processing of
the check result set component in one embodiment. This
component is passed an indication of a logical column and
returns an indication as to whether the corresponding physi-
cal column is in the result set. In decision block 701, if the
logical column corresponds to a custom column, then the
component continues at block 704, else the component
continues at block 702. In decision block 702, if the standard
table that contains the standard column corresponding to the
logical column is in the result set, then the component
continues at block 703, else the component returns an
indication of not found. In decision block 703, if the
standard column corresponding to the logical column is in
the result set, then the component returns an indication of
found, else the component returns an indication of not
found. In decision block 704, if the custom table correspond-
ing to logical column is in the result set, then the component
continues at block 705, else the component returns an
indication of not found. In decision block 705, if the custom
column corresponding to logical column is in the result set,
then the component returns an indication of found, else the
component returns an indication of not found.

FIG. 8 is a flow diagram that illustrates the processing of
the populate logical table component in one embodiment.
The component is passed an indication of a logical table of
the dataset object and adds rows to the logical table corre-
sponding to the data of the result set. In block 801, the
component selects the next row of the physical table corre-
sponding to the logical table. In decision block 802, if all the
rows of the physical table have already been selected, then
the component returns, else the component continues at
block 803. In block 803, the component selects the next
logical column of the logical table. In decision block 804, if

20

25

30

35

40

45

8

all the logical columns of the logical table have already been
selected, then the component loops to block 801 to select the
next row of the physical table, else the component continues
at block 805. In block 805, the component retrieves the data
of'the cell from the result set for the selected logical column
of the selected row of the physical table. In block 806, the
component adds retrieved data to logical column of the
logical table and then loops to block 803 to select the next
logical column.

FIG. 9 is a flow diagram that illustrates the processing of
the transform logical to physical update component in one
embodiment. The component is passed a delta data structure
that defines various updates to the logical table. The delta
data structure contains an entry for each update of a logical
table. Each entry identifies a logical table that was updated,
logical columns of the logical table that were updated, an
operation (e.g., update, delete, or add), and the name of a key
and its value which specify the specific row of the logical
table that was updated. The entry also contains for each
logical column indications of whether to generate a new
identifier for this column, whether the data was null before
the update, and whether the data is null after the update. In
block 901, the component selects the next entry specified in
the delta data structure. In decision block 902, if all the
entries of the delta data structure have already been selected,
then the component returns, else the component continues at
block 903. In block 903, the component retrieves the row
from the dataset object corresponding to the updated row of
the logical table of the selected entry. In block 904, the
component selects the next logical column specified in the
delta data structure for the selected entry. In block 905, if all
the logical columns have already been selected, then the
component loops to block 901 to select the next entry of the
delta data structure, else the component continues at block
906. In decision block 906, if the selected logical column is
a custom column, then the component continues at block
907, else the component continues at block 908. In block
907, the component generates update instructions (e.g., SQL
statements) for the database to update the pivot table for the
custom column corresponding to the selected logical column
and then loops to block 904 to select the next logical column.
In block 908, the component adds a column to a row update
instruction for the standard table that contains the logical
column. The component then loops to block 904 to select the
next logical column.

The Pseudo Code Table contains sample pseudo code for
generating the instructions to update the physical table based
on the delta data structure.

Pseudo Code Table

GenerateSqlFromDelta()

For each entry in delta

Read operation
Read all keys into collection accessible by name
Read all columns into collection accessible by name

For each standard or custom table of the logical table being updated

If table is a custom table
For each column in the custom table
Call GeneratePivotUpdate(operation, keys, update)
Next
Else
For each column in the standard table
Add column name and update value to update list
Next

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 26 of 172

US 7,251,653 B2

9

-continued

10

Pseudo Code Table

17.

18. Call GenerateUpdate(operation, keys, update list)

19. Endif

20 Next

21. Next

22. }

23.

24. GeneratePivotUpdate(operation, keys, update)

25. {

26. Lookup pivot table definition (definition defines key columns + name
column)

27.

28. If the operation is an update, generate an insert if the value is currently null,
an update if it is going from a value to another value, and generate a delete if it
changes from a value to null.

29.

30. Inserts and deletes generate insert and delete statements respectively.

31}

32.

33 GenerateUpdate(operation, keys, updatelist)

34.

35. Generate where clause from keys

36.

37. If operation is delete

38. Generate delete statement only using keys.

39. Else

40. If operation is insert

41. Generate insert using keys and update list as values.

42. Else

43. Generate update using update list and use where clause from earlier in

function.

44,

45. Endif

46. Endif

47. }

One skilled in the art will appreciate that although specific
embodiments of the mapping system have been described
herein for purposes of illustration, various modifications
may be made without deviating from the spirit and scope of
the invention. One skilled in the art will appreciate that a
pivot table can be organized in many different ways. For
example, multiple entities can share a common pivot table or
each entity can have its own pivot table. Also, a pivot table
can be represented as a single database table or multiple
database tables. A pivot table contains data for the custom
columns of a physical table without having a database
column for each custom column. Accordingly, the invention
is not limited except by the appended claims.

We claim:
1. A method in a computer system for providing a view of
data, the method comprising:
providing physical data having standard and custom data,
the standard data having entries with data for standard
fields, the custom data having data for custom fields,
the custom fields being represented by pivot data;
providing a map between standard and custom fields and
logical fields of logical data;
providing a result set containing physical data from a
standard field and a custom field;
organizing the physical data of the result set into logical
data using the provided map; and
storing the organized logical data as the view.
2. The method of claim 1 wherein the physical data, the
custom data, the pivot data, and the logical data are repre-
sented as tables, the tables having rows and columns.

35

40

45

50

55

60

65

3. The method of claim 2 where each row of the pivot
table identifies a custom column, a row of the physical table,
and data for the custom column of the identified row of the
physical table.

4. The method of claim 2 wherein the map maps columns
of the logical table to the corresponding standard column or
custom column.

5. The method of claim 4 wherein the map of a logical
column includes an identifier of the custom column used by
the pivot data.

6. The method of claim 2 wherein when the logical table
is updated, updating the standard table and the custom table.

7. The method of claim 2 wherein the physical table
comprises multiple standard tables with standard columns
and when a logical column of the logical table is updated,
updating only the standard table including the corresponding
standard column.

8. The method of claim 2 wherein when the updating of
the logical table includes adding data for a custom column
of a logical row, adding a row to the pivot table for the
custom column of the physical row corresponding to the
logical row.

9. The method of claim 2 wherein when the updating of
the logical table includes updating data for a custom column
of a logical row, updating a row of the pivot table for the
custom column of the physical row corresponding to the
logical row.

10. A computer-readable storage medium containing a
data structure for mapping between a logical table and a
physical table, the physical table including a standard table
and a custom table, the data structure comprising:

for each logical column of the logical table,

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 27 of 172

US 7,251,653 B2

11

when the logical column corresponds to a standard
column of the standard table, mapping the logical
column to the corresponding standard column; and
when the logical column corresponds to a custom
column of the custom table, mapping the logical
column to the corresponding custom column, the
custom table being represented by a pivot table;
instructions for generating a logical view of physical data
using the mapping; and

instructions for storing the generated view.

11. The computer-readable storage medium of claim 10
wherein the pivot table includes for each custom column, a
row for each row of the physical table including data for the
each custom column.

12. The computer-readable storage medium of claim 10
wherein each mapping of a logical column includes a name
for the logical column, an indication of whether the corre-
sponding standard column is a key of the standard table of
the corresponding standard column, a name for the corre-
sponding physical column, and a indication of either the
standard table or the custom table.

13. The computer-readable storage medium of claim 10
wherein the mapping of the logical column to the corre-
sponding custom column includes a name of the correspond-
ing pivot table, an identifier of a pivot column containing a
name of the custom column, an identifier of a pivot column
containing data of the custom column, and an identifier of a
pivot column containing a key for a physical row.

14. A computer-readable storage medium containing
instructions for controlling a computer system to update
data, by a method comprising:

providing a map between standard and custom columns of

a physical table and logical columns of a logical table,
the custom columns being represented using a pivot
table;

providing an indication of an update to the logical table;

using the map to determine the standard column or

custom column to which an updated logical column
corresponds; and

effecting the update of the determined column of the

physical table.

15. The computer-readable storage medium of claim 14
wherein when the determined column is a custom column
updating a row of the pivot table.

16. The computer-readable storage medium of claim 15
wherein each row of the pivot table identifies a custom
column, a row of the physical table, and data for the
identified custom column of the identified row of the physi-
cal data.

17. The computer-readable storage medium of claim 14
wherein the logical table is generated by providing a result
set containing physical data retrieved from standard and
custom columns of the physical table and the map is used to
map the retrieved physical data to the corresponding logical
data of the logical table.

20

25

30

35

40

45

50

12

18. The computer-readable storage medium of claim 17
wherein the logical table is represented as a dataset object.

19. The computer-readable storage medium of claim 18
including adding tracker tables to the dataset object to log
updates to the logical table.

20. The computer-readable storage medium of claim 14
wherein the physical table includes multiple standard tables
and the updating includes updating only those standard
tables with standard columns corresponding to logical col-
umns that were updated.

21. A computer-readable storage medium containing
instructions for controlling a computer system to update
data, by a method comprising:

providing a map between physical columns of a physical

table and logical columns of a logical table, the physi-
cal table being represented a multiple database tables
within a database;

providing a result set containing physical data derived

from the multiple database tables;

organizing the physical data of the result set into a logical

table based on the provided map;

providing an indication of an update to the logical table,

the update updating logical columns corresponding to
physical columns represented in different database
tables;

using the provided map to determine to which columns of

which database tables the updated logical columns
correspond; and

effecting the update of the determined columns of the

database tables.

22. The computer-readable storage medium of claim 21
wherein the database tables correspond to standard tables
and a custom table, the custom table being represented by a
pivot table.

23. The computer-readable storage medium of claim 22
wherein when a determined column is a custom column of
the custom table, updating a row of the pivot table.

24. The computer-readable storage medium of claim 22
wherein each row of the pivot table identifies a custom
column, a row of the physical table, and data for the
identified custom column of the identified row of the physi-
cal data.

25. The computer-readable storage medium of claim 21
wherein the logical table is represented as a dataset object.

26. The computer-readable storage medium of claim 25
including adding tracker tables to the dataset object to log
updates to the logical table.

27. The computer-readable storage medium of claim 21
wherein the physical table includes multiple standard tables
and the updating includes updating only those standard
tables with standard columns corresponding to logical col-
umns that were updated.

#* #* #* #* #*

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 28 of 172

Exhibit B

Case 2:10-cv-00825-JLR Docum

United States Patent 9

Gennaro et al.

o

US005742768
(i1 Patent Number: 5,742,768
451 Date of Patent: Apr. 21, 1998

[54]

[75]

[731

[21]
[22]

[51]
[52]
[58]

[56]

5,572,643 1171996 Judson

SYSTEM AND METHOD FOR PROVIDING
AND DISPLAYING A WEB PAGE HAVING
AN EMBEDDED MENU

Inventors: Giuseppe Gennaro. Cupertino; Jake
McGowan, San Jose; Anne P. Wagner.
Menlo Park; Kinney Wong. San Jose;
Benjamin A. Zamora, Stanford. all of

Calif,
Assignee: Silicon Graphics, Inc.. Mountain View.
Calif.
Appl. No.: 680,836
Filed: Jul. 16, 1996
Int. C1.6 GO6F 13/00
U.S. CL 295/200.33

Field of Search 364/DIG. 1. DIG. 2;
395/761. 762, 326. 352, 353, 354, 355.
356, 357. 358, 200.47, 200.48, 20.33

References Cited
U.S. PATENT DOCUMENTS
............................... 395/200.48

OTHER PUBLICATIONS

John C. Dhabolt “Re: Help with Menus” http://dejanews.
com (Jun. 13, 1996) p. 1.

Primary Examiner—Robert B. Harrell
Antorney, Agent, or Firm—Baker & Botts, L.L.P.

[57] ABSTRACT

A method for providing a web page (26) having an embed-
ded menu (46) to a web browser (24) and for displaying the
web page (40) to a user of the web browser (24) are
provided. A request for a web page (20) is received from a
web browser (24). In response to the request. a web page
(26) and an applet (28) associated with the web page (20) are
packaged for transmission to the web browser (24). The web
page (26) and the applet (28) are then transmitted to and
downloaded by the web browser (24). When the web page
(26) is displayed and the applet (28) is executed by the web
browser (24). the applet (28) creates and manages an embed-
ded menu (46) in the displayed web page (40)under control
of the applet (28). This embedded menu (46) provides a user
of the web browser (24) with a plurality of links (48) through
one action in the displayed web page (40).

20 Claims, 3 Drawing Sheets

30

32§

File Edit

View Go Bookmarks

Options Directory Window Help

=)

Iimoges

<o e=>

Back | [Forword

Q

Reload

"

Home

:

U

@O

find Stop

Print

[
o e
-
3

3]

Location: I hitp://www.sgi.com/ss.home.page.him1 I 40

SILICON SURF

WHO WE ARE

| - 46

CORPORATE CVERYIEW
Job Opporthiities
Investor Relafions
Subsidiaries “49
Sales Offices

O 1)

GLOBAL
SITES

CUSTOMER
SUPPORT

TECHNOLOGY
& DEVELOPERS

SERIOUS
FUN

WEB
INNOVATION

O O O O O

Il

J

htip:/ /www.sgi.com /Qverview /corp /overview.him! C

38

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 30 of 172

U.S. Patent Apr. 21, 1998 Sheet 1 of 3 5,742,768
L FIG. 1

HOST SYSTEM |-12 " 14~4 CLIENT SYSTEM

WEB SERVER WEB BROWSER

20 22 NET{;ORK 26 28

W\EB 2 (lNTERNET{ ;EB £

N

oace | APPET | H 15 INTRANET H | page | APPLET

30
FIG. 24 o

32{ File Edit View Go Bookmarks Options Directory Window Help
34% <o fl o= I 1Y QllBl|2||o| i O

Back | [Forward| | Home | |Reload| |Images|| Open || Print | | Find Stop

36% Location: | hitp://www.sgi.com/ss.home.page.htm1 40

SILICON SURF

WHO
WE ARE

PRODUCTS
& SOLUTIONS

GLOBAL
SITES

CUSTOMER
SUPPORT

TECHNOLOGY
& DEVELOPERS

SERIOUS
FUN

D«I O

WEB
INNOVATION
——
44

38{ 1 Welcome 1o Silicon surf! C

L

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 31 of 172

U.S. Patent Apr. 21, 1998 Sheet 2 of 3 5,742,768

FIG. 2B s

32{ File Edit View Go Bookmarks Options Directory Window Help
34%@@@@%@ S|m]| [0

Bock ! |Forward| [Home | |Reload | |Images Print Find Stop

il

1o

(=]
]
3

P

36% Location: | hitp://www.sgi.com/ss.home.page.him1 40

SILICON SURF

WHO WE ARE
CORPORATE OVERVIEW
Job Opport

. ':\}mes
4 Investor Relafions
(::) Subsidiaries Y49

Sales Cffices

GLOBAL
SITES

CUSTOMER
SUPPORT

O
O
O & oeveioers
O
Q

SERIOUS
FUN

WEB
INNOVATION

A

el

38 { 3 hitp://www.sgi.com/Qverview/corp/overview.htm1 [2l

O®)| FIG. 34 O®|| |FIC. 3B
olole Wiclole
61D Ol

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 32 of 172

U.S. Patent Apr. 21, 1998 Sheet 3 of 3 5,742,768
FIG. 4 INITIALIZE |60

MOUSE EVENT |62

-

IS
66 YES ANTER

\ r OVER LINK

DISPLAY DESTINATION SPOT?
URL ASSOCIATED
WITH LINK SPOT

64

72

IS
POINTER
OVER HOT
SPOT?

YES

DISPLAY EMBEDDED 24
MENU ASSOCIATED |~
WITH HOT SPOT

LINK TO DESTINATION
70~ URL ASSOCIATED ‘

WITH LINK SPOT
[TH LYK 5P MOUSE EVENT |-~ 76

78

IS
POINTER

HIGHLIGHT SELECTED OPTION
AND DISPLAY DESTINATION URL I~ g
ASSOCIATED WITH SELECTED OPTION

LINK TO DESTINATION
URL ASSOCIATED WITH |~ g4
SELECTED MENU OPTION

(DONE)

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 33 of 172

5.742,768

1

SYSTEM AND METHOD FOR PROVIDING
AND DISPLAYING A WEB PAGE HAVING
AN EMBEDDED MENU

TECHNICAL FIELD OF THE INVENTION

This invention relates in general to the field of electronic
systems, and more particularly to a system and method for
providing and displaying a web page having an embedded
menu.

BACKGROUND OF THE INVENTION

Web servers and web browsers operating across an IP
(internet protocol) network are widely used to provide
remote access to information stored on a host system. The
public Internet and private intranets are examples of such IP
networks and use a communication protocol referred to as
the hyper-text transfer protocol (HTTP). The information is
commonly packaged as multiple web pages created using a
hyper-text markup language (HTML) which can be inter-
preted by a web browser to generate the display to the user.

In general, URLs (uniform resource locators) are used to
identify web pages located on web servers operating on the
network. A user of a web browser can request a web page by
entering the appropriate URL into the web browser. A
request for the selected web page is then transmitted to the
web server across the network. The web server receives the
request and then packages and transmits the web page back
to the web browser for display to the user.

The interaction between web servers and web browsers
across the IP network provides a relatively easy and increas-
ingly popular means for accessing remote information.
However, the process of navigating through this information
in conventional web pages is a linear process. Web pages
provide links that correspond one-to-one with other web
pages and resources. Thus, one action inside the web page
(e.g.. a mouse click) can initiate one link to another web
page.

One of the means for enhancing a web page is the use of
an executable program attached to web page which is
downloaded to and executed by the web browser along with
the associated web page. These executable programs are
commonly referred to as applets and are constructed from a
programming language which is executable by the web
browser. Once executed by the web browser. the applet
provides programmed functionality. For example, the JAVA
programming language established by SUN MICROSYS-
TEMS provides a means for creating JAVA applets which
can be attached to web pages to provide enhanced function-
ality for the displayed web page. One example of a function
created by applets is animating an image to produce moving
objects on the web page. Applets have also been used to
create executable spots in a web page such that graphics on
that spot animate when a mouse pointer is moved over the
targeted area. An additional function created by applets is to
generate and display a separate window on top of a web page
in response to a mouse click inside the web page. Such a
window can provide a menu bar across the top of the
window and provide user options within that window. but it
is not within the web page itself. There are. of course, a
number of other functions that can be implemented using
applets in association with web pages. However. conven-
tional web pages and applets have not altered the linear
navigation process.

SUMMARY OF THE INVENTION

In accordance with the present invention, a system and
method for providing and displaying a web page having an

5

10

15

20

25

30

35

45

50

55

65

2

embedded menu are provided which substantially eliminate
or reduce disadvantages and problems associated with pre-
viously developed web pages.

According to one aspect of the present invention. a
method for providing a web page having an embedded menu
to a web browser is provided. This method includes receiv-
ing a request for a web page from a web browser. In response
to the request, a web page and an applet associated with the
web page are packaged for transmission to the web browser.
The web page and the applet are then transmitted to the web
browser. The applet is operable to create and manage an
embedded menu in the displayed web page when the web
page is displayed and the applet is executed by the web
browser. This embedded menu provides a user of the web
browser with a plurality of links through one action in the
displayed web page.

According to another aspect of the present invention, a
method for displaying a web page having an embedded
menu to a user of a web browser is provided. This method
includes downloading a web page and an applet from a web
server. The web page is then displayed to a user of the web
browser., and the applet is executed by the web browser. An
embedded menu is created and managed in the displayed
web page under control of the applet. This embedded menu
provides a user of the web browser with a plurality of links
through one action in the displayed web page.

According to a further aspect of the present invention, a
host system for providing and a client system for displaying
a web page having an embedded menu are provided. The
host system includes a data storage device. a memory and a
processor and executes a web server for packaging and
transmitting the web page and applet. The client system
includes a display, a memory and a processor and executes
a web browser for downloading the web page and the applet
and for displaying the web page and executing the applet.
The applets enhance the web page to have an embedded
menu that provides a plurality of links through one action in
the displayed web page.

Embedding a menu in a web page to allow a user of a web
browser to access multiple links through one action in the
web page is a technical advantage of the present invention.
The web page is enhanced through the use of an applet
which creates and manages the embedded menu. A web page
having an embedded menu according to the present inven-
tion provides an easier and more efficient way to access
information from that web page, thus increasing the quality
of the web page. In one implementation. the web page has
one or more hot spots. When a pointer is positioned over one
of these hot spots, a corresponding embedded menu is
displayed to provide links to multiple additional web pages.
A user can then select a link by positioning the pointer over
one of the links and initiating an action such as by clicking
a mouse button.

Another technical advantage of the embedded menus of
the present invention is the ability to allow a user of a web
browser to scan the information content of a web site from
an initial displayed web page without linking to new web
pages. A user can reposition a pointer over each hot spot to
invoke each embedded menu and be provided with multiple
links at one or more levels within the web site. For example.
an operator of a web server can create a web site for which
the initial web page can display, through the use of embed-
ded menus. the overall structure of the web site as well as
links to numerous location therein. A user of the web
browser can thereby identify and link to desired information
more quickly and easily than possible with conventional
linear links.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 34 of 172

5,742,768

3
BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention
and advantages thereof may be acquired by referring to the
following description taken in conjunction with the accom-
panying drawings in which like reference numbers indicate
like features and wherein:

FIG. 1 is a block diagram of a web server and a web
browser in an IP network;

FIGS. 2A and 2B illustrate an embedded menu in a web
page according to the teachings of the present invention;

FIGS. 3A and 3B illustrate a comparison between one-
to-one and multiple-to-one correspondence between links
and actions in a web page; and

FIG. 4 is a flow chart of a process for managing links and
embedded menus in a web page.

DETAILED DESCRIPTION OF THE
INVENTION

FIG. 1 is a block diagram of a web server 12 and a web
browser 14 in an IP (internet protocol) network 16. IP
network 16 can be. for example, the public Internet or a
private intranet. and host system 12 and client system 14 can
communicate across IP network 16 using a hyper-text trans-
fer protocol (HTTP).

Host system 12 and client system 14 can be, for example,
a personal computer or computer workstation, and generally
include a data storage device. a memory device, a processor
and a display. The memory device in host system 12 can
store code for and the processor can execute a web server 18.
The data storage device in host system 12 can store a web
page 20 and an associated applet 22. Web page 20 can be
written in the hyper-text mark-up language (HTML), and
applet 22 can be written in an interpretive language such as
JAVA. Analogous to host system 12, the memory device in
client system 14 can store code for and the processor can
execute a web browser 24. The memory device in client
system 14 can store a downloaded web page 26 and an
associated applet 28. Web browser 24 is an applet-capable
web browser and can both display web page 26 and execute
applet 28.

In operation, a user of client system 14 can use web
browser 24 in order to transmit a request for web page 20
across IP network 16. The request can be, for example, a
URL (uniform resource locator) for web page 20. Web
server 18 can receive the request from web browser 24 and.
in response. can package and transmit web page 26 and
applet 28 to web browser 24 across IP network 16. Web
server 18 packages web page 26 and applet 28 based upon
web page 20 and applet 22 stored on host system 12. After
downloading web page 26 and applet 28, web browser 24
can display web page 26 to a user of client system 14 and can
execute applet 28. Applet 28 only needs to be downloaded
once and is executed by web browser 24. When a link is
selected in web page 26. web server 18 is sent a request
across IP network 16 and can transmit the selected page.

The execution of applet 28 by web browser 24 can
provide enhanced functionality to web page 26. According
to the teachings of the present invention, applet 28 creates
and manages one or more embedded menus in the displayed
web page 26. Each embedded menu provides a user of web
browser 24 with a plurality of links through one action in the
displayed web page 26.

FIGS. 2A and 2B illustrate an embedded menu in a web
page according to the teachings of the present invention. As
shown in FIG. 2A. a display window generated by web

10

15

20

25

30

35

45

50

55

65

4

browser 24, indicated generally at 30, can include a menu
bar 32 and a plurality of buttons 34 each providing one of
various functions for a user of web browser 24. Display
window 30 also includes a location field 36 which serves a
dual function of indicating the URL of the current location
and of allowing a user to enter a new destination URL. In the
illustrated example, web browser 24 is being used to navi-
gate the public Internet, and the URL shown in location field
36 is the URL of a web page on the world wide web. Display
window 30 further includes a status bar 38 that provides
information about the operation of web browser 24. The
items in menu bar 32 and buttons 34 and the general layout
of display window 30 as shown in FIG. 2A are common
features of the NETSCAPE NAVIGATOR web browser
available from NETSCAPE COMMUNICATIONS.

Display window 30 includes a displayed web page, indi-
cated generally at 40, which is generated by web browser 24
from the downloaded web page 26 and associated applet 28.
Displayed web page 40 provides the user of web browser 24
with the information content accessed from web server 18.
The user generally interacts with display window 30 and
displayed web page 40 using a pointer device (e.g.. a mouse)
which controls the position of a pointer 42 and allows a user
to initiate actions (e.g., through a mouse click). According to
the teachings of the present invention, displayed web page
40 includes a plurality of hot spots 44 that provide access to
embedded menus created and managed by applet 28. The
embedded menus can be accessed by positioning pointer 42
over one of hot spots 44.

FIG. 2B shows an embedded menu 46 in displayed web
page 40 which has been invoked by positioning of pointer 42
over the upper hot spot 44. In the illustrated example,
selection of the upper hot spot 44 is indicated by highlight-
ing that hot spot 44 with a halo. as shown. Embedded menu
46 includes a banner that matches the text (“WHO WE
ARE”) that was associated with the selected hot spot 44 in
FIG. 2A. Embedded menu 46 also includes a number of
links 48, each providing a link to another web page or
resource. The links 48 provided by embedded menu 46 may
or may not be URLs directly accessible without initially
passing through the initial displayed web page 40.

In FIG. 2B, the “Corporate Overview” link is selected by
the positioning of pointer 42 over that portion of embedded
menu 46, and status bar 40 reflects the URL associated with
the “Corporate Overview” link. If desired. the user of web
browser 24 can link to the “Corporate Overview” informa-
tion by initiating an action. for example by clicking a mouse
button, while pointer 42 is in this position. The user could
also move pointer 42 elsewhere in embedded menu 46 to
select and initiate one of the other links. In other
embodiments, embedded menu 46 can have multiple levels
of menus accessible through initial menu options.

When pointer 42 is moved outside of embedded menu 46.
embedded menu 46 will be removed and displayed web page
40 will again look as shown in FIG. 2A. The user can move
pointer 42 over any of hot spots 44 and invoke an associated
embedded menu. each of which would provide multiple
links to other web pages or resources.

Another technical advantage of the embedded menus of
the present invention is the ability to allow a user of web
browser 24 to scan the information content that can be linked
from an initial displayed web page 40 without linking to new
web pages. A user can reposition pointer 42 over each hot
spot 44 and be provided with link options within a web site
at one or more levels. For example. an operator of web
server 18 can create a web site for which the initial web page

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 35 of 172

5.742,768

5

can display. through the use of embedded menus, the overall
structure of the web site as well as links to a number of
locations therein. A user of web browser 24 can thereby
identify and link to desired information more quickly and
easily than possible with conventional linear links.

FIGS. 3A and 3B illustrate a comparison between one-
to-one and multiple-to-one correspondence between links
and actions in a web page. In FIG. 3A, web page 50 includes
conventional links which correspond on a one-to-one basis
with actions in web page 50. For example. link “A” points
to web page 52, and a user can initiate a link to web page 52
from web page 50 by positioning a mouse pointer on link
“A” and clicking the mouse button. Similarly, link *2” in
web page 52 points to a web page 54, and link “c” in web
page 54 points to a web page 56. Link “1” in web page 52.
links “a” and “b” in web page 54 and link “i” in web page
56 point to other web pages. which are not shown. In order
to navigate web pages 52, 54 and 56 from a starting point of
web page 50, a user is required to travel linearly through
links “B”, “c” and “i” in web pages 50, 52 and 54. This linear
navigation requires the user to wait as each link is processed.
If using conventional links, an operator of web page 50
would need to add two links to web page S0 on order to
allow a user to initiate a direct link to all three web pages 52,
54 and 56. The user is still only able to access one link for
each action in web page 50.

Web page 58 of FIG. 3B has an embedded menu accord-
ing to the teachings of the present invention that provides
multiple-to-one correspondence between links and actions
in web page 58. Web page 58 provides a user with a much
easier and more efficient access to web pages 52, 54 and 56.
Web page 52 has an associated applet that creates and
manages an embedded menu accessible throngh hot spot
“B”. When the embedded menu is invoked, the embedded
menu provides the user with links to web pages 52. 54, and
56. Through one action in web page 58, the user can access
all three links. This allows the user to more quickly and
easily navigate web pages 58, 52. 54 and 56. For example.
the user does not have to wait for multiple links to be
processed in order to reach web page 56 as is required for the
linear links described above.

FIG. 4 is a flow chart of a process for managing link spots
and hot spots in a web page according to the teachings of the
present invention. With respect to this process, the term
“link spots” is used to refer to conventional one-to-one links
within a web page. In general, this process is performed by
an applet executed by a web browser in along with the
display of an associated web page.

In step 60, the web page and applet are initialized such
that they are displayed and executed by the web browser. In
step 62. the web browser recognizes a mouse event initiated
by a user of the web browser. In step 64, the applet checks
whether the mouse pointer is over a link spot in the web
page. If so, in step 66. the applet displays the destination
URL associated with that link spot. In step 68. the applet
checks whether the mouse event included a mouse click. If
so. in step 70. the applet initiates a link through the web
browser to the destination URL associated with the link spot.
At this point, a new web page associated with the destination
URL will be loaded which may or may not have an asso-
ciated applet. If no mouse click occurred, the applet follows
step 68 by returning to step 62 and obtaining information
about the next mouse event.

If. in step 64. the mouse pointer is not over a link spot.
then, in step 72. the applet determines whether the mouse
pointer is over a hot spot. If not. the applet returns to step 62

10

15

20

25

30

35

45

50

55

65

6

and waits for information about the next mouse event. If the
mouse pointer is over a hot spot. then, in step 74, the applet
displays the embedded menu associated with that hot spot.

After displaying the embedded menu. the applet waits, in
step 78. for information about the next mouse event. If the
mouse pointer moves outside of the embedded menu. the
applet returns to step 64. If the mouse pointer remains inside
the embedded menu, then, in step 80. the applet highlights
the selected link within the embedded menu and displays the
destination URL associated with the selected link. In step 82.
the applet determines whether the mouse event included a
mouse click. If not, the applet returns to step 76 to obtain
information about the next mouse event. If the mouse event
did include a mouse click, then, in step 84, the applet
initiates a link to the destination URL associated with the
selected menu link. At this point, a new web page associated
with the destination URL will be loaded by the web browser
which may or may not have an associated applet.

One implementation of an applet according to the teach-
ings of the present invention uses the JAVA programming
language established by SUN MICROSYSTEMS. The
JAVA programming language provides features to allow
frame and window classes to be defined where the frame
class provides a separate window created and displayed on
top of the web page. and the window class provides an
ability to have a menu bar across the top of that separate
window. However. the JAVA language does not contemplate
embedding a menu in a web page to provide multiple links
from one action in the web page. In order to create such an
embedded menu using a JAVA applet. the present invention
defines a new JAVA class which implements the embedded
menu.

The following TABLE provides an outline of the JAVA
applet and new class of this implementation of the present
invention.

TABLE

Applet and Embedded Menu Class

APPLET
Import Java elements
Import Embedded Menu Class
Define variables
Define defaults for embedded menus
(Main loop)
Obtain hot spots and images, overwriting defaults of they exist
Load default menu parameters
Obtain embedded menu for each hot spot
Define default links
Obtain additional links
Draw and cache images
Reset flag for mouse click
Check whether mouse click inside embedded menu or on link spot
EMBEDDED MENU CLASS
Import Java elements
Define variables
Construct menus

Set menu colors

Set menu title
Highlight appropriate menu item
Draw embedded menus, items and border

Although the present invention has been described in
detail, it should be understood that various changes. substi-
tutions and alterations can be made hereto without departing
from the spirit and scope of the invention as defined by the
appended claims.

What is claimed is:

1. A method for providing a web page having an embed-
ded menu to a web browser. the method comprising:

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 36 of 172

5,742,768

7

receiving a request for a web page from a web browser;

packaging the web page and an applet associated with the
web page for transmission to the web browser; and

transmitting the web page and the applet to the web
browser;

wherein the applet is operable to create and manage an
embedded menu in a displayed web page when the web
page is displayed and the applet is executed by the web
browser, the embedded menu providing a user of the
web browser with a plurality of links through one
action in the displayed web page.

2. The method of claim 1, wherein packaging the applet
comprises packaging an applet that creates and manages a
Pop-up menu.

3. The method of claim 2. wherein the applet creates and
manages a pop-up menu that is invoked by positioning a
pointer over a hot spot in the displayed web page.

4. The method of claim 2. wherein the applet creates and
manages a pop-up menu which has a plurality of menu
levels.

5. The method of claim 1, wherein receiving a request
comprises receiving a request across the public Internet.

6. The method of claim 1, wherein receiving a request
comprises receiving a request across a private intranet.

7. The method of claim 1. wherein packaging the applet
comprises a JAVA applet having a definition for an embed-
ded menu class.

8. The method of claim 1., wherein the request for the web
page is received across a private intranet.

9. A method for displaying a web page having an embed-
ded menu to a user of a web browser, the method compris-
ing:

downloading a web page and an applet transmitted by a

web server;

displaying the web page to a user of the web browser; and

executing the applet, the applet creating and managing an

embedded menu in the displayed web page under
control of the applet. the embedded menu providing a
user of the web browser with a plurality of links
through one action in the displayed web page.

10. The method of claim 9, wherein creating and man-
aging the embedded menu comprises creating and managing
a pop-up menu.

11. The method of claim 10. wherein creating and man-
aging the embedded menu comprises creating and managing
a pop-up menu which is invoked by positioning a pointer
over a hot spot in the displayed web page.

10

15

20

25

30

35

40

45

8

12. The method of claim 10, wherein creating and man-
aging the embedded menu comprises creating and managing
a pop-up menu which has a plurality of menu levels.

13. The method of claim 9. wherein downloading a web
page and an applet comprises downloading the web page
and the applet across the public Internet.

14. The method of claim 9. wherein downloading a web
page and an applet comprises downloading the web page
and the applet across a private intranet.

15. The method of claim 9, wherein downloading the
applet comprises downloading a JAVA applet having a
definition for an embedded menu class.

16. A host system executing a web server to provide a web
page having an embedded menu to a web browser, the host
system comprising:

a data storage device storing a web page and an associated

applet;

wherein the associated applet, when executed. can
create and manage an embedded menu in a displayed
web page;

a memory device storing code for the web server; and

a processor coupled to the data storage device and to the
memory device, the processor executing code for the
web server such that the web server is operable to:
receive a request for the web page from a web browser;
package the web page and the applet for transmission

to the web server; and
transmit the web page and the applet to the web
browser;

such that the applet creates and manages an embedded
menu in the displayed web page when the web page is
displayed and the applet is executed by the web
browser. the embedded menu providing a user of the
web browser with a plurality of links through one
action in the displayed web page.

17. The host system of claim 16, wherein the embedded

menu is a pop-up menu.

18. The host system of claim 17, wherein the pop-up
menu is invoked by positioning a pointer over a hot spot in
the displayed web page.

19. The host system of claim 16, wherein the pop-up
menu has a plurality of menu levels.

20. The host system of claim 16, wherein the request for
the web page is received across the public Internet.

I R

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 37 of 172

Exhibit C

Case 2:10-cv-00825-JLR Documemmlllmmlllﬂmmm“IHM“W“M'I'

United States Patent ;9

Tuniman et al.

US005644737A
111 Patent Number: 5,644,737
451 Date of Patent: Jul. 1, 1997

[54] METHOD AND SYSTEM FOR STACKING
TOOLBARS IN A COMPUTER DISPLAY

[75] Inventors: David Charles Tuniman; Vinod
Anantharaman, both of Redmond;
Michael Halvar Jansson, Bellevue, all |
of Wash.

[73] Assignee: Microsoft Corporation, Redmond,
Wash.

[21] Appl. No.: 466,611

[22] Filed: Jun. 6, 1995

[51] bt CLE .o GOGF 5/01; GOGF 1/00
[52] US.CL 395/352; 395/348
{58] Field of Search 395/155, 156,

395/157, 159, 161, 351, 348, 352, 354

[56] References Cited
U.S. PATENT DOCUMENTS
5,500,936 3/1996 Allen et al.ceererervernnmennne 395/156
5,506,952 4/1996 Choy et al. ...ceerveemrenvraseresnes 395/156
OTHER PUBLICATIONS

Perfectoffice® Desktop Application Director (Trademark of

Primary Examiner—Phu K. Nguyen
Assistant Examiner——_Ch'if N. Vo
Attorney, Agent, or Firm—Ronald M. Anderson

(571 ABSTRACT

A plurality of toolbars that include graphic objects, which
can be selected by the user, are arranged in a stack. Only the
graphic objects on one or more selected toolbars are dis-
played. The user can selectively choose a toolbar that has
graphic objects currently hidden by the selected toolbar(s),
causing one or more of the toolbars to move aside, exposing
the group of graphic objects associated with the toolbar
newly selected by the user. Movement of the toolbar(s) to
disclose the graphic objects on the newly selected toolbar is
preferably accomplished by animating the toolbar(s) to slide
to different positions, so that the graphic objects or buttons
on the newly selected toolbar are displayed. For added
realism, the animation sequence used to disclose graphic
objects on a selected toolbar includes an audible sound and
a “bump” as the toolbar(s) reach a rest position.

Novell, Inc.), 1994, pp. 1-15. 33 Claims, 9 Drawing Sheets
Microsoft Word Ver. 6.0c (Trademark of Microsoft Corpo-
ration), 1994, pp. 1-2.
24 52
(z
\\ Office Manager v~ 56

Des ktop

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 39 of 172

U.S. Patent Jul. 1, 1997 Sheet 1 of 9 5,644,737

/ 18
14
12
16
/ =
20 ’
.\ 22
FIG. 14 10
HARD DRIVE &
INTERFACE
7 Y = =
15 I 17 19
DATA BUS
4 <
13 |
v 21 | 2
MEMORY CPU KEYBOARD
- (ROM & RAM) INTERFACE
23

f““
" - FIG. 1B

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 40 of 172

U.S. Patent Jul. 1, 1997 Sheet 2 of 9 5,644,737

%0 FIG. 3

{___¢
58~=| " \ Office Manager [v]~56
7 —
32’\/@ DeSktOp &3
o | BB «
34 | ,©
4 r—\t e ‘;AL‘
~* 44a 44a 44p
50 FIG. 6
54
S .
58 T=| Office Manager v 56
1-Office [E2 . |
7 o
= ¥ :, ()
36d L x
n~ .52
gl

5 37— —
66 j FIG. 7

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 41 of 172

U.S. Patent

36a

gl 36b =]

37

~/36c

112

115

AutoFormat}”

| 36d

(L! T Oﬁ;ice ﬂ :
J

42
112
Qo

114

Desktop

w
N

\
4

FIG. 9

110

Jul. 1, 1997

Sheet 3 of 9 5,644,737

(START >\,200

210

IS
DESIRED TOOLBAR
VISIBLE?

NO
v - 212

USER SCANS

TOOLBARS TO
IDENTIFY DESIRED

TOOLBAR VES

r 214

y

USER CLICKS ON THE
DESIRED TOOLBAR

»
e

y

DESIRED 216
TOOLBAR IS
REVEALED

y

(STOP }218

FIG. 14

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 42 of 172

U.S. Patent Jul. 1, 1997 Sheet 4 of 9 5,644,737
— }/162 163 //164
o Y - 160
View Buttons Toolbars -
—Color . —Options
Toolbar: | v} 165 D\}%fge Buttons
[], Show Tooltips
Color: | h_166] 178
DLAIways on Top
168 180
|__Change Color 171 D_euto Hide between Uses
. . 182
ELH'S_I?OQ' adient Fill Dfsmgoth muto Eit into Title Bar Area
Use Standard Toolbar Color Ammate Toolbars Soun
172 EL ‘j d
186™ OK . Cancel
188
= 162 163 164
/ J]
. - iy 78
View T Buttons Y Toolbars —
80
Toolbarl Accessories [v] 88 Add File...
84
@ Calculator : 9™ Add Folder
¥ Notepad A
O Wordpad : 9211 Add Space
¥ Paint Move
i —-—[Space]-——- o4 Delete
82 M| ® Clipboard Viewer
Character Map
[0 Exchange [v] 86
Accessories OK Cancel
\ {

FIG. 1] 188 188

U.S. Patent

96

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 43 of 172

Jul. 1, 1997 Sheet 5 of 9 5,644,737
— 162 163 164
) 7
View T Buttons T Toolbars V‘J 00
Show these folders as Toolbars 98\1 Add Toolbar...
¥ gfﬁce 102\1 Remove
| ¥ Accessories 4] 84
O lcons
@ Desktop
Programs Move
Al 86
OK Cancel
\ <)
F I G. 12 186 188
Gl 1 1= =] -k
A
72
70
74 36b
[48'
AEE ==& | mEOffice I

FIG. 13

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 44 of 172

5,644,737

U.S. Patent Jul. 1, 1997 Sheet 6 of 9
(222
STACKED TOOLBARS
ARE IN DESIRED
ORIENTATION FIG. 15
226 228 254
224)a {
DOES CLICK AND DRAG DRAG STACK
USER WANT vEs, TTLEBAROR | |UNTIL STACK OR
TO UNDOCK BACKGROUND || OUTLINE FORMS D
OF TOOLBAR 2D RECTANGLE
256
232 234
CLICK AND DRAG DRAG STACK
TITLEBAROR | | UNTIL 1D RECT. >
BACKGROUND ["|FORMED - SNAPS[™__
OF TOOLBAR SIDE OF SCREEN
258
238 240
CLICK AND DRAG DRAG STACK
BORDER TO
BORDER OF > SIRED)
FLOATING STACK RM DE \
SIZE AND SHAPE
. 239 21 259
ENABLE AUTO- DRAG TOOLBAR
ves,| FITANDCLICK | | FORMING 1D)
AND DRAG RECT. ON UPPER| _
TOOLBAR RIGHT SCREEN | -
24 260
- 244 246
SHIFT-CLICK & DRAG TOOLBAR
DRAG TOOLBAR TO FORM
TOOLBAR FOM_>YES" 'BACKGROUND [*] SEPARATE2D >
, ' TO REMOVE RECTANGLE
250 252 262
CLICK AND DRAG| | DRAG TOOLBAR
vEs BACKGROUND | | TO OVERLAP
OF FLOATING STACK - SNAPS
TOOLBAR TO STACK SIZE

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 45 of 172

U.S. Patent Jul. 1, 1997 Sheet 7 of 9 5,644,737

AUTO-FIT 300
FUNCTION

SET LENGTH OF 302
TOOLBAR RECTANGLE
TO FIT LONGEST
TOOLBAR

v

REMOVE TOOLBAR | 304
BORDER

v

SHRINK GRAPHIC K306
OBJECTS TO EQUAL
WINDOW CONTROL

SIZE

v

DOCK TOOLBAR AT §_308
TOP OF WINDOW,
RIGHT JUSTIFIED, LEFT
OF WINDOW
CONTROLS

310 .
DONE
(FIG. 16

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 46 of 172

U.S. Patent ~ Jul. 1,1997 Sheet 8 of 9 5,644,737

RESIZE STACKED \ 320
TOOLBAR

USER DRAGS OUTER | 322
BORDER OF STACKED
TOOLBAR

DOES
TOOLBAR
NEED TO BE
TJALLER

DO ALL 324

GRAPHIC OBJECTS
FIT ON CURRENT
TOOLBAR

NEXT TOOLBAR
YES a8 XES 334

INCREASE NO. OF ORE 330 j

NO | ROWS OF SRAPHIC TOOLBARS TO YES
PROCESS?
R NO
\ 4
FORM UNION OF ALL _|._336
DECREASE NO. OF GRAPHIC OBJECTS OF
L »{ ROWS OF GRAPHIC ALL TOOLBARS
OBJECTS |} 332
338

CHANGE
IN RELATIVE YES
DIMENSIONS _l
CHANGE
340] ORIENTATION
NQ |
-
: SET DIMENSIONS OF ALL | 342
FIG 1 7 TOOLBARS BASED ON
. ORIENTATION & LAYOUT
OF GRAPHIC OBJECTS

SET DIMENSIONS OF THE | 344
OUTER BORDER OF
STACKED TOOLBAR

y

(DONE)346

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 47 of 172

5,644,737

Sheet 9 of 9

Jul. 1, 1997

U.S. Patent

61 ‘OIA

JNVS M3N INON
NOILISOd . . 9 NOILISOd _ v,
1snray AV13a (dnng 'an3 'sod) 4 AV13a LSAray (N3 's0d)¥4=.80d

omwx/

\. R
8.2

dWNg

o

. 948

=k

88z’ o8z ./%
N\

vie 34ai1s

éle

~l 3arns
042 T SNONOYHONAS

N %

\

IVILINI

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 48 of 172

5,644,737

1

METHOD AND SYSTEM FOR STACKING
TOOLBARS IN A COMPUTER DISPLAY

FIELD OF THE INVENTION

This invention generally pertains to a method and system
for displaying graphic controls on a computer screen, and
more specifically, to the configuration and properties of
toolbars comprising a plurality of graphic icons that are
displayed for interactive control by a user.

BACKGROUND OF THE INVENTION

Graphics user interface operating systems, such as
Microsoft Corporation’s WINDOWS™ . and related
products, have greatly improved the ease with which tasks
can be accomplished on the computer. Instead of requiring
the user to remember the file name and path of an application
program in order to execute it, as has conventionally been
the case in text-based operating systems, in a graphic
operating system, the user need only activate an icon that
represents the application. The graphic icon is activated by
positioning a cursor over it and then “double-clicking” on
the icon with a pointing device that is used to control the
cursor. Since the properties assigned to the graphic icon link
it to the executable file and specify its complete directory
path, there is no need for the user to recall that information
after the icon properties are initially setup to run the pro-
gram.

Typically, a user will arrange a number of frequently used
applications in different groups based on subject matter or
common task relationship. Within a group, each application

is represented by a graphic icon. In certain desktop shells, -

the graphic icons representing different applications are
arranged in panels of buttons that can be configured in
different rectangular shapes by dragging on a side of the
panel with the cursor using the pointing device.

Graphic icons are also commonly used within applica-
tions to represent different tools, controls, commands,
macros, or procedures. For example, Microsoft Corpora-
tion’s Word for Windows includes several toolbars, each
comprising a plurality of different graphic icon buttons that
can be selected to carry out various tasks in the word
processing system. The user can customize a toolbar or build
a new one by adding or deleting graphic icon buttons. The
appearance of any graphic icon button can be altered by
editing the bitmap that appears on it in an icon editing utility.
Toolbars are thus well known in the art and frequently used
because they enable a user to immediately access tools
within applications, just as the panels of graphic icon buttons
that represent different applications or programs enable
those applications to be immediately selected on the desktop
of the graphic user interface.

However, there is a limitation on the number of graphic
icons that can be available to the user. Each time that a
toolbar is selected by the user to be left open on the computer
screen, the space occupied by the toolbar becomes unavail-
able for display of other information or data. In a word
processing system, the user may find that having more than
two or three toolbars open at a time reduces the display
screen area for the document being created or edited to an
unacceptable extent. The loss of display screen area to
toolbars is particularly noticeable if the user is running the
display at a relatively low resolution, e.g., 640x480 pixels.
Although the toolbars can be docked to one side or to the top
or bottom of the screen so that they are not floating over and
obscuring a document, the area that they occupy is not

10

15

20

25

30

35

45

50

55

65

2

available to display the text of the document. Consequently,
the user is forced to choose between the convenience of
readily accessing tools and applications by simply activating
the corresponding graphic icons on the toolbars, or of having
more display screen area available for text and other data. It
would clearly be preferable to provide an alternative
approach that enables the user to quickly access multiple
toolbars without unduly limiting the screen area that is
available for displaying text and graphics. Any such solution
should allow the user the same kinds of flexibility in
configuring toolbars and in positioning them at different
points in the display as is presently available. The prior art
does not appear to provide an acceptable solution to this
problem.

SUMMARY OF THE INVENTION

In accordance with the present invention, a method is
defined for providing access to a plurality of graphic objects
in a computer display. The method includes the step of
organizing the plurality of graphic objects into a plurality of
generally quadrilaterally shaped toolbars. Each toolbar com-
prises a group of associated graphic objects organized in an
array (one or two-dimensional). A stack of the plurality of
toolbars is created on the computer display, so that any
selected toolbar is fully visible and hides a substantial
portion of any non-selected toolbar. (Note that the invention
contemplates having more than one toolbar selected and
fully visible.) A graphic object in any selected toolbar that is
fully visible to a user on the computer display is directly
selectable by the user to activate the graphic object. The user
is enabled to choose any non-selected toolbar from among
the plurality of toolbars, causing the toolbar that is thus
chosen by the user to become a selected toolbar. The graphic
objects on the chosen toolbar then become fully visible to
the user on the computer display. A previously selected
toolbar also then becomes a non-selected toolbar that is no
longer fully visible, because a substantial portion of the
previously selected toolbar is substantially hidden by the
toolbar just chosen by the user.

Preferably, the graphic objects include buttons that are
activated when the user clicks a select button on a pointing
device while a cursor controlled by the pointing device is
positioned over the button. To facilitate selection of a
desired toolbar, each of the toolbars is provided with a
characteristic identification that distinguishes that toolbar
from at least some of the other toolbars disposed in the stack.
The characteristic identification includes at least one alpha-
numeric character and/or logo that is disposed on the toolbar
in a position remaining visible when a substantial portion of
the toolbar is hidden by a selected toolbar.

A separate toolbar is added to the stack by enabling the
user to select the separate toolbar with a pointing device and
then to drag the separate toolbar onto the stack. Similarly,
the method preferably further comprises the step of enabling
the user to unstack the plurality of toolbars by selecting one
of the toolbars comprising the stack and dragging that
toolbar away from the stack. The toolbar dragged away
becomes a separate toolbar that is no longer a part of the
stack.

In addition, the method preferably includes the step of
enabling the user to select the stack with a pointing device
and to drag the stack to an edge of a window on the computer
display screen, docking the stack at the edge. The user is also
preferably enabled to change an orientation of the stack
between vertical and horizontal, where the orientation
relates to a longitudinal dimension of the plurality of tool-
bars comprising the stack.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 49 of 172

5,644,737

3

The method also includes the step of causing one of the
toolbars to slide in order to enable the toolbar chosen by the
user to become fully visible. Preferably included are the
steps of causing the toolbar that is sliding to decelerate as it
approaches a rest position; and, causing the toolbar that is
sliding to bounce before stopping. To enhance the realism of
this sliding motion, it is associated with an audible sound.

In an auto-hide mode, the user is enabled to selectively
hide the stack along an edge of a window on the computer
display. In this mode, only a line of pixels comprising a
border of the stack is visible at the edge of the window.
Similarly, the user is enabled to selectively fully display the
stack that is hidden in the auto-hide mode. Although
unrelated, another feature enables the user to selectively
autosize the stack to encompass a largest toolbar within the
stack.

Yet another sizing feature of the method enables a user to
selectively move the stack into a border region of a window
on the computer display. In response to this action, the stack
is cansed to auto-fit within the border by adjusting dimen-
sions of the stack and of the graphic objects that are fully
displayed within any selected toolbar. The stack is posi-
tioned adjacent a window control in the border region.

The user is enabled to selectively float the stack on the
computer display, and while the stack is floating, can modify
a width and a length of the stack.

In another preferred step, the user is enabled to use a
pointing device to select a graphic object appearing on the
computer display outside of the stack. The graphic object
that is selected can be dragged onto a toolbar comprising the
stack, thereby adding the graphic object to the group of
graphic objects within the toolbar. Optionally, the user can
select one of the graphic objects comprising a toolbar and
drag the graphic object to another toolbar for association
with the group of graphic objects comprising the other
toolbar. Alternatively, the user can select one of the graphic
objects comprising a toolbar and drag the graphic object to
a position outside of the stack, onto the computer display,
causing the graphic object to become separated from the
stack. The user is further enabled to select an object visible
on the computer display with the pointing device; the object
can then be dragged and dropped onto one of the graphic
objects that is fully visible on any selected toolbar. In
response, the graphic object is activated, and the object
dropped serves as an input to an action that occurs as a result
of the activation.

The user can select a plurality of properties for the stack.

A label identifying an object represented by each graphic
object is displayed when the user moves a cursor over the
graphic object. Furthermore, the label identifies a non-
selected toolbar when the user moves the cursor over a
visible portion of any non-selected toolbar.

Another aspect of the present invention is directed to a
graphic operating system that is implemented on a computer.
The graphic operating system includes graphic objects that
appear on a computer display and comprises a plurality of
means for implementing functions that are generally con-
sistent with the steps of the method described above.

BRIEF DESCRIPTION OF THE DRAWING
FIGURES

The foregoing aspects and many of the attendant advan-
tages of this invention will become more readily appreciated
as the same becomes better understood by reference to the
following detailed description, when taken in conjunction
with the accompanying drawings, wherein:

10

15

20

25

30

35

45

50

55

65

4

FIG. 1A is a block diagram of a personal computer
suitable for use in implementing the present invention;

FIG. 1B is a block diagram showing some of principle
components of the processor chassis in the personal com-
puter of FIG. 1A;

FIG. 2 (prior art) is a conventional horizontal “Office”
toolbar on which are disposed a plurality of graphic object
buttons that can be selected by the user to activate an object
on a computer;

FIG. 3 is a horizontal stacked toolbar in accordance with
the present invention, in which the Office toolbar of FIG. 1
is displayed as it appears stacked on top of a “Desktop”
toolbar, typically docked at the top or bottom of the display
screen;

FIG. 4 illustrates the stacked toolbar of FIG. 3 in which
the Desktop toolbar has been selected to be on top of the
Office toolbar;

FIG. 5 illustrates another stacked toolbar similar to that of
FIG. 3, but with a “Mouse” toolbar included in the stack;

FIG. 6 shows a “floating” stacked toolbar having the
rectangular panel shape that is automatically assumed by the
stacked toolbar of FIG. 4, when undocked from the edge of
the display screen;

FIG. 7 is a floating stacked toolbar in a rectangular panel
configuration automatically assumed by the stacked toolbar
of FIG. 3 when it is undocked from the edge of the screen;

FIG. 8 illustrates a vertical stacked toolbar similar to the
horizontal stacked toolbar of FIG. 3, as it appears when
docked at the side of the display screen, and showing a
“Tooltip” that identifies the function of a button on the
toolbar;

FIG. 9 shows an upper portion of a vertical stacked
toolbar, with a “Tooltip” displayed to identify an underlying
toolbar;

FIG.10 is a toolbar properties dialog box for the “View”
tab;

FIG. 11 is a toolbar properties dialog box for the “But-
tons” tab;

FIG. 12 is a toolbar properties dialog box for the “Tool-
bars” tab;

FIG. 13 is a graphic window showing a docked stacked
toolbar and a stacked toolbar that has been autofit in the title
region of the window;

FIG. 14 is a flow chart illustrating the steps of a user in
selecting a hidden toolbar in a stack to be fully displayed;

FIG. 15 is a flow chart illustrating the logic implemented
in handling the toolbars comprising a stacked toolbar;

FIG. 16 is a flow chart showing the logic steps in the
autofit function used to position a stacked toolbar in the title
bar;

FIG. 17 is a flow chart showing the steps implemented in
resizing a stacked toolbar;

FIG. 18 is a Jackson structured programming diagram
showing the steps involved in synchronously moving one of
the toolbars from an initial position to its end position; and

FIG. 19 is state machine diagram illustrating an asyn-
chronous method for sliding a toolbar from an initial posi-
tion to an end position.

DESCRIPTION OF THE PREFERRED
EMBODIMENT

With reference to FIG. 1A, a generally conventional
personal computer 10 is shown, which is suitable for imple-

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 50 of 172

5,644,737

5

menting the present invention. Personal computer 10
includes a processor chassis 12 in which are disposed a
mother board and a plurality of other circuit boards (neither
separately shown) of the type conventionally used in a
personal computer. The mother board includes a central
processing unit (CPU).23 and memory 21, including both
read only memory (ROM) and random access memory
(RAM) that are coupled to the CPU through a data bus 13,
as shown in FIG. 1B. Also coupled to the CPU through the
data bus are a display interface 15, a hard drive and floppy
drive interface 17, a serial/mouse port 19, and a keyboard
interface 25. Although many other internal components of
processor chassis 12 are not shown, those of ordinary skill
in the art will appreciate that such components and their
interconnection are well known. Accordingly, further details
concerning the internal construction of personal computer
10 need not be disclosed in connection with the present
invention.

Personal computer 10 includes a floppy drive 14 and a
hard drive 16 that are driven through the corresponding
interface noted above, for use in writing and reading files
stored on magnetic media. An operating system can thus be
readily loaded on hard drive 16 by copying the necessary
files from floppy disks that are inserted into floppy drive 14.
‘When the personal computer is “booted up” on the operating
system from the files stored on hard drive 16, the program
instructions comprising these files are loaded into memory
21 and executed by CPU 23, causing graphic elements of the
operating system to be displayed to a user on a display 18.
The user interacts with programs executing on personal
computer 10 by entering instructions or selections on a
keyboard 20, and/or through use of a mouse 22 (or other
pointing device suitable for maneuvering a cursor on com-
puter display 18) to select and activate objects that are
graphically displayed thereon.

The preferred embodiment of the present invention is
designed to operate within a graphic operating system, such
as Microsoft Corporation’s WINDOWS operating system.
However, it should be understood that the invention can
readily be implemented in other graphic operating systems.
A graphic operating system enables the user to select objects
using mouse 22 or other suitable pointing device, thereby
minimizing textual input required of the user on keyboard
20. Typically, a graphic operating system provides graphic
objects that can be activated when the user moves the cursor
over a graphic object and selects it by clicking on the select
button on the pointing device (typically, the left mouse
button unless changed by the user). For example, if a graphic
object represents a word processing program, double click-
ing on the graphic object causes the word processing pro-
gram to be executed by the computer. To select a tool
represented by a graphic object, the user moves the cursor
over the graphic object and clicks once with the select button
on the pointing device. As used in this description and in the
claims that follow, a graphic object includes virtually any
object that can be graphically displayed on a toolbar. In
addition to graphic icons such as buttons that represent tools,
hardware, programs, and controls, the preceding definition
of graphic objects is intended to encompass, without
limitation, other objects such as drop-down boxes, list
boxes, and spinners.

FIG. 2 illustrates a typical toolbar on which a plurality of
graphic objects are arranged in a linear array 28. This
example of a prior art toolbar, which comprises a plurality
of buttons linearly arrayed in a line, side-by-side, has
previously been used in such applications as Word for
Windows 6 and Excel 5, both distributed by Microsoft

10

15

20

25

30

35

45

50

55

65

6

Corporation. Other applications have also used either a
vertical or horizontal array of graphic objects that present
various tools, controls, or programs that can be selected by
the user with a pointing device.

As noted above in the Background of the Invention, the
area available on a computer display for presenting a plu-
rality of such toolbars or tool panels is limited, since each
toolbar or array of graphic objects displayed on the screen
takes up space that is needed for the text, data, and/or images
of applications in which the user is working. To reduce the
amount of space required to display a plurality of toolbars,
some prior art designs have displayed a single toolbar and
used tabs extending along the side of the toolbar that enable
a user to selectively open other toolbars. Each tab is asso-
ciated with a different toolbar or menu that is displayed
when the tab is selected by a user. However, the tabs are not
part of the toolbar that is already open. Furthermore, the tabs
typically use space in the screen or window that would
normally be available to an application. Examples of a
tabbed toolbar appear in DELPHI™, a development pro-
gram marketed by Borland Corporation.

As shown in FIGS. 3 through 5, the present invention
substantially reduces the space required to provide access to
a plurality of different toolbars, by stacking the toolbars so
that typically only the graphic objects associated with one or
more of the toolbars in the are visible at a time. Although the
embodiments shown in FIGS. 3 through 5 all contain only
a single toolbar in which the graphic objects are fully visible,
it is also contemplated that a plurality of toolbars in a
stacked toolbar might be fully visible, for example, in a
side-by-side configuration. A stacked toolbar 3¢ in FIG. 3
illustrates how a plurality of graphic objects including
buttons 36a, 36b, 36¢c, and 36d are fully visible on the
toolbar that is currently selected. This visible group of
graphic objects is on a toolbar identified both with a text
label 34 reading “Office” and by a distinctive logo 32, which
is also a control button. It will be apparent that the graphic
objects visible on stacked toolbar 30 look similar to those on
the prior art toolbar shown in FIG. 2. However, stacked
toolbar 30 differs substantially from the prior art toolbar,
because alogo 42 (also a control button) is visible at one end
of the stacked toolbar, but is not evident in the prior art
toolbar. Logo 42 is associated with the graphic objects
grouped on a “non-selected toolbar,” i.e., a toolbar that is not
fully visible. The graphic objects on the non-selected toolbar
are on a portion of that toolbar that is hidden by the selected
Office toolbar.

In a stacked toolbar 38 shown in FIG. 4, the graphic
objects associated with the toolbar identified by logo 42 and
a text label 40 reading “Desktop” are fully visible. Note that
in stacked toolbar 38, the graphic objects associated with the
Office toolbar are now hidden by the Desktop toolbar, so that
only the logo 32 is displayed at one end.

Similarly, in FIG. §, a stacked toolbar 48 is shown in
which the graphic objects comprising the Office toolbar are
fully visible on a stack of toolbars that includes two other
toolbars with groups of graphic objects. The first of these
other toolbars is the Desktop toolbar. The logo associated
with the Desktop toolbar appears at one end of the stack. A
different group of graphic objects is disposed on a toolbar
associated with a mouse logo 46 (also a control button),
which is visible at the opposite end of the stack from the logo
42. Although not specifically shown, the graphic objects
associated with the Mouse toolbar are used for setting
parameters that control the interactive operation of mouse
22.

It should be noted that a logo and/or text may be assigned
to a class of toolbars, rather than to a single toolbar.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 51 of 172

5,644,737

7

Generally, a logo will be used with a toolbar or class of
toolbars that logically represents the type of graphic objects
included thereon. The border color of a toolbar is helpful in
distinguishing one toolbar from another. A “tooltip” feature
(discussed below) also helps to identify the various toolbars
in a stack, in the event that a user is unfamiliar with or
forgets the types of toolbars that are included in a stack.

In the preferred embodiment, the Z order (i.e., stacking
order) remains constant as the selected (fully visible) toolbar
is changed in response to a user’s choice, to enable the
graphic objects on a different toolbar to become visible. The
toolbars that must move to reveal the graphic objects on a
newly selected toolbar depends on the relative position of
the newly selected toolbar in the stacking order. A simple
example will illustrate the simplicity with which the stacked
toolbars move to enable access of any graphic object on any
toolbar in the stack. To access graphic objects 44a and 44b
(FIG. 4), when stacked toolbar 48 is on the display screen
(FIG. 5), the user simply moves the cursor with the pointing
device so that the cursor rests over the visible portion of the
partially hidden toolbar, e.g., over logo 42, and then clicks
the selector button on the pointing device. The previously
selected Office toolbar will then slide left, exposing the
group of graphic objects comprising the Desktop toolbar.
Thereafter, if the user again wishes to access graphic objects
364 through 364 on the Office toolbar (FIG. 3 or FIG. 5), the
user selects logo 32 with the pointing device, causing any
toolbar(s) hiding the graphic objects on the Office toolbar to
slide away, so that graphic objects 36a through 364 (and all
other graphic objects on the Office toolbar) are again dis-
played.

Stacked toolbars on which the graphic objects are
arranged in a horizontally extending array, as shown in
FIGS. 3 through 5, are typically docked or anchored at the
edge of the display screen or window so that the central
portion of the display screen or window is available for any
application that is then running on the computer. FIG. 13
shows a toolbar 48' docked at the bottom of a window 70.
To dock a stacked toolbar, the user simply moves the stack
until it is proximate the edge of the display screen or
window. For example, as the stacked toolbar approaches the
top or bottom edge, the stacked toolbar will automatically
change to the single horizontal row array of graphic objects
as shown in FIGS. 3 through 5 and anchor itself to the edge
of the display screen or window as shown in FIG. 13.

A stacked toolbar can also be docked on the left or right
edges of the display screen or window to convert it to a
vertical toolbar, such as a toolbar 30', which is shown in FIG.
8. Toolbar 30' includes the same graphic objects as toolbar
30 in FIG. 3. Further, vertical stacked toolbar 30' also
includes a portion at its upper end on which is disposed logo
42. When logo 42 is selected with the cursor and mouse 22
or other pointing device, the graphic objects of the Desktop
toolbar, which corresponding to those in stacked toolbar 38
(in FIG. 4), are displayed vertically. When not anchored at
the edge of the display screen in a horizontal or vertical array
of graphic objects, the stacked toolbars are described as
floating, because they can be readily moved about.

When floating away from the screen or window edge, a
stacked toolbars can be readily resized by the user. It is
contemplated that a docked toolbar might also be resizeable;
however, the preferred embodiment does not permit resizing
of a docked toolbar. Although a floating stacked toolbar can
also extend in a single row/column array of graphic objects
if so sized by the user, a floating stacked toolbar is typically
sized into a rectangular panel array of graphic objects
(multiple columns and multiple rows of graphic objects), as

10

15

20

25

30

35

45

50

55

65

8

shown in FIGS. 6 and 7, and the rectangular panel can be
oriented with its long dimension extending from left to fight
or from top to bottom. The rectangular panel includes a title
bar 54, a minimize button 56 that minimizes the stacked
toolbar to form a single graphic object on the display screen,
and an option button 58 that is selected to display a menu of
options or doubled clicked to close the stacked toolbar. To
reshape a stacked toolbar when it is floating, the user simply
moves the cursor until it is adjacent an edge of the toolbar.
At this point, the cursor changes from a pointer into two
parallel, spaced-apart lines representing a sizing tool, as is
customary in the WINDOWS™ graphic operating system.
By holding the select button on the pointing device and
dragging, the side or end of the stacked toolbar selected by
the sizing tool (cursor) is caused to move away from the
respective opposite side or end, changing the shape of the
stacked toolbar. Resizing is limited or controlled by a
resizing algorithm to ensure that the area of the floating
toolbar is sufficient to display all of the graphic objects on
any toolbar in the stack. Thus, if the user decrease the length
of the floating stacked toolbar, its width will increase auto-
matically by an amount that accommodates the minimum
area required by any toolbar in the stack.

A flowchart in FIG. 17 illustrates the steps involved in
resizing a floating stacked toolbar, beginning with a block
320. In a block 322, the user drags an outer border of the
stacked toolbar with the resizing tool by manipulating the
mouse while the select button is depressed with cursor
positioned on the border of the stacked toolbar. The system
processes each of the toolbars in the stack when the resizing
movement is complete, to determine how the stacked toolbar
will be displayed. A decision block 324 determines if all of
the graphic objects fit on a toolbar currently being processed.
If not, a decision block 326 determines if the current toolbar
needs to be taller (i.e., from top to bottom). If so, the logic
in a block 328 increases the number of rows of graphic
objects in the current toolbar so that all of the graphic objects
will fit on the toolbar. The procedure then advances to a
decision block 330. However, if the toolbar does not need to
be taller in decision block 326, the logic proceeds to a block
332, which decreases the number of rows of graphic objects,
thereby making the current toolbar wider to accommodate
all of the graphic objects on it. The logic thereafter proceeds
to decision block 330. Assuming that all graphic objects fit
on the current toolbar being evaluated in decision block 324,
the logic simply drops to decision block 330 without chang-
ing the number of rows of graphic objects on the current
toolbar.

In decision block 330, the system determines if there are
more toolbars to be processed, and if so, proceeds to a block
334. At this point, the next toolbar in the stack is fetched for
evaluation, returning to decision block 324. Once all of the
toolbars in the stack have been evaluated in this manner, the
logic proceeds with a block 336 following decision block
330.

Block 336 forms a union of all of the graphic objects on
all of the toolbars in the stack. This step makes it possible to
determine if changes that may have been made in the relative
dimensions of the toolbars in blocks 328 and/or 332 will
require a change in the layout of the stacked toolbar. Based
on the requirements of the union formed of all of the graphic
objects, a decision block 338 determines if the relative
dimensions of the stacked toolbar must be changed. In other
words, has the change made by the user resizing the stacked
toolbar border caused the stacked toolbar to be wider than it
is taller (compared to its relative orientation before resizing)
or vice versa. If a change of this sort has occurred, a block

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 52 of 172

5,644,737

9

340 changes the orientation of the stacked toolbar accord-
ingly. If no change is required, or after a change in orien-
tation has been made, the logic continues with a block 342.

Block 342 scts the dimensions of all toolbars in the stack
based upon the orientation and layout of the graphic objects
on the toolbars following the resizing operation by the user.
The stacked toolbar must accommodate the size require-
ments of the graphic objects on all of the toolbars, and thus
will typically have an orientation and layout determined by
the toolbar in the stack having the most graphic objects. A
block 344 provides for setting the dimensions of the outer
border of the stacked toolbar accordingly. The resizing
procedure concludes in a block 346.

In FIG. 6, a stacked toolbar 50 is arranged as a panel on
which are disposed graphic objects 44a and 44b (among
others). A text label 52 and logo 42 appear at the top of the
selected Desktop toolbar. Similarly, text label 34, which
identifies the hidden toolbar panel on which the graphic
objects comprising the Office group are disposed, is dis-
played at the left side, in a vertical orientation, with corre-
sponding logo 32. By moving the cursor so that it appears
within the portion of floating stacked toolbar 50 occupied by
text label 34 and logo 32 and then depressing the select
button on the pointing device, the user can cause the graphic
objects comprising the Office group to be fully disclosed as
. shown on a stacked toolbar 60 in FIG. 7. The graphic objects
comprising the Desktop group are then hidden by the Office
toolbar and are not visible. To again selectively display the
graphic objects in the Desktop toolbar, the user moves the
cursor to the right end of stacked toolbar 60, so that it is on
the portion in which text 52 and logo 42 are disposed, and
then activates the select button on the pointing device. The
graphic objects in the Desktop group are then fully revealed,
as shown on stacked toolbar 50 in FIG. 6.

A floating stacked toolbar is moved by selecting its title
bar 54 with the cursor and then moving the cursor with the
select button on the pointing device held depressed. The
stacked toolbar moves with the cursor and can be reposi-
tioned on the screen or window in the floating configuration
or docked where desired along one of the edges. FIG. 13
illustrates another option in which a stacked toolbar 72 has
been moved into the title bar of a window. An auto-fit
algorithm sizes the stacked toolbar to fit within the title bar,
adjusting the height of the graphic objects to equal the height
of the title bar and strips away the border around the stacked
toolbar. The auto-sized toolbar is docked in the title bar just
to the left of the WINDOWS™ control buttons.

Referring to FIG. 8, a graphic object 37 that represents an
object such as a file is shown to illustrate how it can be
dragged about on the display screen using the mouse to
select and move it and then dropped upon ome of the
displayed graphic objects within stacked toolbar 30'. In the
example shown in this Figure, object 37 represents a docu-
ment that the user wants to print. This document will be
printed when it is dragged and dropped onto graphic object
365, which corresponds to a printer (not shown) that is
connected to the personal computer (or to a local area
network to which the personal computer is coupled). When
the select button is released to complete the drag-and-drop
operation, the printer is activated, causing it to print the
document represented by graphic object 37. Similarly, other
files represented by graphic objects can be dragged and
dropped onto a graphic object representing an application,
thereby activating the application so that it runs using the file
as an input, e.g., opening the document for editing in a word
processing program. Files can also be dropped into folders.

A different type of drag-and-drop operation is used for
adding graphic objects to a stacked toolbar. A graphic object

10

15

20

25

30

35

45

50

55

65

10

that is dragged and dropped onto a toolbar in the stack while
the ALT key is depressed is added to the group of graphic
objects associated with that toolbar, at approximately the
position where the graphic object is dropped. In addition, the
graphic objects that are on the toolbar can be shifted left or
right to create a space between existing graphic objects. If
necessary, the stacked toolbar is resized to accommodate
additional graphic objects, since the stacked toolbar has a
size determined by the toolbar or group of graphic objects in
the stack that requires the most space. A graphic object can
also be moved from a toolbar and positioned in the window
or display screen as a free floating graphic object. For
example, in FIG. 13, graphic.object 36b, which represents a
printer, is shown as itis moved from the Office toolbar. It can
be dropped in the position shown in the Figure, or moved
onto the Desktop toolbar. A graphic object 74, representing
a folder can then be dragged and dropped onto the Office
toolbar to replace the printer.

Since a user may fail to recall the specific entity that is
represented by a graphic object or by a logo of the toolbar
in the stack, provision is made for displaying a text box label
that identifies the graphic object or logo name, when the
cursor is moved over the graphic object or logo. For
example, in FIG. 9, a portion of a vertical stacked toolbar
110 is shown (similar to vertical stacked toolbar 30"). A
cursor 112 is positioned so that it partly overlies logo 42,
which is associated with the graphic objects comprising the
Desktop toolbar. Accordingly, a text box 114 appears with
the word “Desktop” displayed within it, identifying the
toolbar represented by logo 42 for the user. A similar text
box 115 is displayed in FIG. 8 as cursor 112 is moved over
a graphic object on the displayed Office toolbar, indicating
that the graphic object activates the AutoFormat function.

A further option provided for the stacked toolbars of
FIGS. 3 through 5 is an auto-hide mode wherein the stacked
toolbar is completely hidden except for a line a few pixels
wide that extends vertically along the edge of the display
screen. When the user jams the cursor against the edge of the
display screen along which the fully hidden stacked toolbar
is disposed, the stacked toolbar is again fully displayed,
enabling the user to select any of the graphic objects on the
selected toolbar or to choose a hidden toolbar so that its
graphic objects are displayed. When the user moves the
cursor off the fully displayed toolbar, it returns to the hidden
position, i.c., appears to move off the screen or window.
Optionally, the user can elect to have the fully hidden
stacked toolbar “pop” into the fully displayed position, or
can elect to have the hidden toolbar slide into the fully
disclosed position, in an animated fashion. The auto-hide
mode uses the least amount of display screen area, but the
graphic objects on the selected toolbar are not available until
the stacked toolbar is selectively displayed.

Various properties of a stacked toolbar can be selected in
a properties dialog box 160 that is shown in FIGS. 10
through 12. In FIG. 10, a tab 162 is presently selected within
dialog box 160, enabling the user to control the “View”
properties of the stacked toolbar. A tab 163 labeled “But-
tons” is selected in FIG. 11 to enable a user to configure the
graphic objects used on a selected toolbar, and a tab 164
labeled “Toolbars” can be selected to enable a user to choose
the specific toolbars that are included in a stack.

In the View properties, the user can select toolbar from a
drop down box 165 and then set a Toolbar background color
for the selected toolbar. The currently selected background
color appears in a box 166. To change the color, the user
selects a Change Color button 168, causing a screen with a
color palette (not shown in the Figure) to be displayed, from

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 53 of 172

5,644,737

1

which the user can select the desired background color. A
check box 170 also enables the user to indicate whether a
gradient fill should be added to the text on the stacked
toolbars. The term “gradient fill” refers to a color scheme in
which the background color gradually varies from a dark to
a lighter intensity in the area where the text label for the
toolbar is disposed (for example, on the right side of floating
stacked toolbars 50 and 60 in FIGS. 6 and 7). A smooth
characteristic for the background color is selected by placing
a check in a check box 171. A check box 172 enables the
user to selectively indicate that a Standard Toolbar Color
should be used. The Standard Toolbar Color is determined
by defaults for the desktop set in the graphic operating
system.

In an Options section 174, a check box 176 allows the user
to selectively indicate if large buttons are to be inciuded on
the stacked toolbars. Large buttons occupy more space but
are easier to identify at higher screen resolutions, at which
the graphics icons can be relatively small. A check box 178
provides for selectively indicating whether the Tooltips box
(i.e., the label box identifying the graphic object or toolbar)
is displayed when the user moves the cursor with the
pointing device so that it is over one of the graphic objects
or logos on the stacked toolbars.

In a check box 180, the user can indicate if the stacked
toolbars are always visible on top of the current window,
whether docked or floating. Alternatively, the user can check
a box 182 to enable the auto-hide mode for the stacked
toolbars discussed above, so that only a line a few pixels
wide appears along the edge of the screen when stacked
toolbars are fully hidden. In a check box 184, the user can
elect to enable the auto fit option that enables toolbars to be
docked in the title bar of the display screen or window. A
check box 185 selectively enables animation of the toolbars
so that one or more toolbars slide to disclose the graphic
objects on a newly selected toolbar. Similarly, a check box
187 can be sclected to epable sound to accompany the
animation.

Two additional buttons are inclnded within the dialog box,
inside its bottom edge. An “OK” button 186 is the default
that is highlighted, enabling the user to indicate that all of the
toolbar properties have been set as desired. A Cancel button
188 closes the properties dialog box without changing any of
the current properties that were previously selected by the
user.

In FIG. 11, a set of control 78 include a drop-down box
80 to enable the user to select a toolbar on which the buttons
or other graphic objects are to be modified. In the example
shown, an Accessories toolbar has been selected. The
graphic objects within the Accessories toolbar are shown in
alist box 82. Any of the listed graphic objects can selectively
be activated or deactivated to appear in the toolbar, as
indicated by a check mark or absence of a check mark in a
box adjacent the graphic object. “Move” control buttons 84
or 86 can be selected to shift any graphic object selected in
list box 82 up or down within the list, thereby changing the
relative position of the graphic object on the toolbar. Con-
trols 88, 90, 92, and 94 respectively enable a user to add a
file, folder, or space, or delete a graphic object from the list
displayed in list box 82.

Similarly, in FIG. 12, controls 100 are provided to enable
a user to specify the toolbars that are to be included in the
stack. A list of the toolbars are provided in a box 96. Any of
these listed toolbars can be activated for inclusion in the
stack by selectively indicating the toolbar with a check mark
in an adjacent check box. “Move” control buttons 84 and 86

10

15

20

25

30

35

45

50

55

65

12

are provided to change the relatively Z (stacking) order of
the toolbars in the stack, by moving a selected toolbar up or
down in the list. Controls 98 and 102 respectively enable a
user to add a toolbar to the list or rtemove a selected toolbar
from the list.

The steps implemented by a user to change the state of a
stacked toolbar are shown in FIG. 14, beginning at a start
block 200. In a decision block 210, the user determines if a
desired set of graphic objects in a toolbar are visible. If the
toolbar desired by the user is visible, the user can select one
of the graphic objects in the group of graphic objects
associated with that toolbar. Accordingly, a block 216 indi-
cates that the desired toolbar is revealed. Thereafter, the
logic concludes in a stop block 218. However, if the desired
toolbar is hidden by a different selected toolbar, a block 212
indicates that the user scans the displayed text/logos of the
other toolbars in the stack, to identify the desired toolbar.
Thereafter, as noted in a block 214, the user selects and
clicks on the desired toolbar in the stack using the cursor and
pointing device. That action causes the graphic objects on
the newly selected toolbar that were previously hidden to be
revealed, as noted in block 216. The user can then select any
of the graphic objects on the newly selected toolbar with the
pointing device.

In FIG. 15, the logic implemented by the user in changing
the state of a stacked toolbar is shown as a series of steps.
A decision block 220 determines if the stacked toolbar is in
a desired orientation, and if so, proceeds to the result shown
in a block 222. At this point, no change in the orientation (or
configuration) of the stacked toolbar is required. However, if
the stacked toolbar is not in the desired orientation, a
decision block 224 determines if the user wants to undock
the stacked toolbar from the edge of the display screen or
window, where it has previously been anchored. If so, the
user selects the stacked toolbar with the cursor and pointing
device and drags the stacked toolbar away from the edge of
the screen or window. This step is indicated in a block 226.
A block 228 indicates that the stacked toolbar automatically
forms a rectangular panel (a stacked toolbar like those
shown in FIGS. 6 and 7) as it is moved away from the edge
of the display screen.

If the user is not undocking a stacked toolbar from the
edge of the display screen, a decision block 230 determines
if the user intends to dock a stacked toolbar that is floating.
For an affirmative response, the logic flows to a block 232,
which indicates that the user has clicked the selector of the
mouse or other pointing device while the cursor is on the
title bar or background of the stacked toolbar. In a block 234,
the user drags the stacked toolbar, causing the stacked
toolbar to antomatically form a one-dimensional rectangle
(single row or column of graphic objects) that snaps into a
docked position at the adjacent edge of the display screen or
window. :

If the response to decision block 230 is negative, a
decision block 236 determines if the user wants to resize a
floating stacked toolbar. If so, a block 238 indicates that the
user is clicking and dragging the border of the floating stack
which has been sclected after the cursor has changed to a
resizing mode. In a block 240, the user drags the border of
the stacked toolbar to achieve the desired two-dimensional
size and shape, subject to the autosizing limitations that
ensure the area is sufficient to display the graphic objects
included within any of the toolbars comprising the stacked
toolbar.

A negative response to decision block 236 leads to a
decision block 237, which determines if the users wants to

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 54 of 172

5,644,737

13

auto-fit the stacked toolbar within the title bar at the top of
the display screen or window. If so, a block 239 provides for
enabling the auto-fit feature so that the use can click on the
stacked toolbar title bar or background and then drag the
stacked toolbar onto the title bar of the display screen or
window. As the user drags the stacked toolbar onto the title
bar, a block 241 indicates that the stacked toolbar becomes
one-dimensional, forming a horizontal line of graphic
objects in the title bar.

Details of the logic implemented in auto-fitting a stacked
toolbar within the title bar are shown in FIG. 16, beginning
at a block 300. In a block 302, the logic sets the width of the
stacked toolbar one-dimensional rectangle to fit the largest
(i.e., the longest) toolbar in the stack. In a block 304, the
border of the stacked toolbar is stripped away. Next, in a
block 306, the graphic objects in the stacked toolbar are
sized to equal the WINDOWS™ control button size,
enabling them to fit within the title bar. A block 308 provides
for docking the stacked toolbar at the top right corner of the
window or display screen, right justified left of the WIN-
DOWS™ controls in the title bar. The logic concludes in a
block 310.

With reference to FIG. 15, a negative response to decision
block 237 leads a decision block 242. In this block, the
graphic operating system determines if the user wants to
remove a toolbar from the stack. If so, the user presses a
designated control key while selecting the background of 20
while selecting the background of the top toolbar and then
drags the selected toolbar with the pointing device to remove
the selected toolbar from the stack, as indicated in a block
244. As shown in a block 246, the user drags the toolbar
away from the stack to form a separate two-dimensional
rectangle (multiple rows/columns) that is not stacked with
any other toolbar.

A negative response to decision block 242 leads to a
decision block 248, which determines if the user wants to
add an additional toolbar to the stack. If so, as indicated in
a block 250, the user does so by clicking and dragging the
background of a floating toolbar that is not part of the stack,
so that as indicated in a block 252, the floating toolbar
overlaps the stack. At this point, the toolbar that has been
dragged into contact with the stacked toolbar snaps to the
stack size and the graphic objects on the newly added toolbar
are fully displayed. A negative response to decision block
248 returns to decision block 220.

Following each of blocks 228, 234, 240, 241, 246, and
252, respectively, are nodes 254, 256, 258, 259, 260, and
262. These nodes represent the state of the stacked toolbar
following the change caused by the actions of the user. Any
further changes to the state of the stacked toolbar are made
by returning to decision block 220 to repeat the logic just
disclosed.

When a user selects a toolbar that is currently hidden to
enable the graphic objects included therein to be fully
displayed, the most direct technique to accomplish this task
would be to simply replace the image of the graphic objects
on the previously selected toolbar with the image of the
graphic objects on the newly selected toolbar that was just
chosen by the user, so that the graphic objects on the newly
selected toolbar are fully displayed. The portion of the
previously selected toolbar that includes the text and/or logo
would then appear at one end of the stack after it is thus
redrawn on the display screen. However, in the preferred
embodiment of the present invention, a different approach
was adopted for replacing the graphic objects previously
selected toolbar with the graphic objects of a newly selected

10

15

20

25

30

35

45

50

55

65

14

and previously hidden toolbar. Specifically, when the user
selects a new toolbar by clicking on its logo, text, or on the
exposed background area adjacent the logo or text, one or
more toolbars appear to slide toward an end of the stack,
exposing the graphic objects on the new selected toolbar.
The sliding animation employed to expose the graphic
objects on the newly selected toolbar is made even more
realistic by providing an audible “swooshing” sound that
accompanies the slide, and by causing any toolbar that is
moving to decelerate as it approaches its final rest position
and to appear to “bump” before settling to rest at that
position.

There are two ways to implement the animated slide and
bump used in the preferred embodiment. The first method is
called a “synchronous slide”, as indicated in a block 270
within FIG. 18, because once the user initiates the sliding
motion, it cannot be interrupted until the animation sequence
is complete. The term “synchronous” is appropriate, because
the animated sequence is performed as a singular operation
that cannot change direction in mid-animation. The graphic
operating system handles the apparent sliding motion, start-
ing from an initial position in a block 272. In carrying out
the animated sliding motion that is referred to as a “SLIDE”
in a block 274, a value for the current position of the moving
toolbar(s) is first determined in a block 282. That position,
which is represented by the variable POS’, is equal to a
function F,(POS, END) in a block 282, where END is the
final position after the slide is completed, and POS is the
current position of the moving toolbar(s). The animation is
done by successively changing the displayed position of the
moving toolbar(s) on the display screen each time that a
predefined delay time has elapsed, as indicated in a block
286, so that the position of the moving toolbar(s) is adjusted,
as indicated in a block 284. With rapid successive redraws
of the display screen at a rate at least equal 15 times/second,
the toolbar(s) appear to slide smoothly across the display
screen.

F, is an acceleration/deceleration function that modifies
the apparent degree to which the position of the toolbar(s)
changes after each successive predefined time delay. In a
block 288, a termination function F(POS, END, BUMP)
controls the position of the sliding toolbar as it approaches
the END position to implement the BUMP effect. A block
276 implements the apparent BUMP at the end of the slide
by adjusting the position of the moving toolbar, as noted in
a block 280, after successive time delays, as indicated in a
block 278.

In the preferred embodiment, F, determines the next
position of the moving toolbar(s) by taking the previous
position and adding the minimum of the constant ‘2~
(pixels) and the function (END-POS/4). In accordance with
the function F, the moving toolbar is shifted to a position,
POS<END (or BUMP). In the preferred embodiment, the
value of BUMP is a constant “4” (pixels) on the display
screen.

A better way to handle the animation uses an asynchro-
nous method, which is illustrated in the state machine
diagram of FIG. 19. If the asynchronous method is
employed, the user is able to change the choice of a selected
toolbar, before the graphic objects comprising the newly
selected toolbar are fully exposed, and can instead select
another toolbar. The asynchromous animation involves
exposing the graphic objects on a newly selected toolbar and
hiding the graphic objects on another toolbar that was
previously selected. In the state machine shown in FIG. 19,
a change of state occurs with respect to the toolbar that
includes the graphic objects to be displayed based upon

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 55 of 172

5,644,737

15

events caused by user input. The user input thus controls
how the graphic objects on a toolbar are exposed. The states
and events illustrated in state machine 290 are defined by the
following Table 1.

TABLE 1
STATE DEFINTTION
Idle Waiting for input or an event to occur
Prepare Toolbar is readied to be moved
Slide Toolbar is moved
Done Movement of toolbar is completed
EVENT DEFINITION
None No event
New New toolbar is selected
Same Same toolbar is selected
Done Toolbar reaches end position

The state machine starts in an initial IDLE state 292. A
time interval elapses between each change of state, and the
changes are dependent upon the current input event. While
in IDLE state 292, state machine 290 takes no action if no
user input occurs. If the user selects a new panel, the state
changes to a PREPARE state in a block 294. At this point,
the user can select the originally selected toolbar (which
corresponds to a NONE action), thereby returning to IDLE
state 292, or can select a NEW toolbar to be displayed,
which leaves the state machine in the PREPARE state. If the
user does not change the original selection, the state changes
to SLIDE in a block 296. At this point, the appropriate
toolbar(s) starts sliding by incrementally changing position
in subsequent screen redraws, in order to display the graphic
objects on the newly selected toolbar. However, while the
toolbar(s) are sliding to disclose the graphic objects, the user
can select a NEW toolbar to be displayed, returning to the
PREPARE state in block 294, or can select the original
toolbar to continue to be displayed (NONE), causing a return
to the IDLE state, or can allow the slide to continue until it
is DONE, as indicated in a block 298. Once the slide is
completed, the user can select yet another NEW toolbar to
be displayed, returning to the PREPARE state in block 294
or can select no further action, leaving the state machine in
the IDLE state in block 292.

Although the present invention has been described in
connection with the preferred form of practicing it, it will be
understood by those of ordinary skill in the art that many
modifications can be made thereto within the scope of the
claims that follow. Accordingly, it is not intended that the
scope of the invention in any way be limited by the above
description, but that it be determined entirely by reference to
the claims that follow.

The invention in which an exclusive right is claimed is
defined by the following:

1. Amethod for providing access to a plurality of graphic
objects on a computer display, comprising the steps of:

(a) organizing the plurality of graphic objects into a
plurality of generally quadrilaterally shaped toolbars,
each toolbar comprising a group of associated graphic
objects organized in an array;

(b) creating a stack with the plurality of toolbars on the
computer display, so that any selected toolbar is fully
visible and hides a substantial portion of any non-
selected toolbar from among the plurality of toolbars; a
graphic object in amy selected toolbar that is fully
visible to a user on the computer display being directly
selectable by the user to activate said graphic object;
and

10

15

20

25

30

35

45

50

55

65

16

(c) enabling the user to choose any non-selected toolbar
from among the plurality of toolbars of graphic objects,
to make the non-selected toolbar that is thus chosen by
the user become a selected toolbar that is fully visible
to the user on the computer display, causing a previ-
ously selected toolbar to become a non-selected toolbar
that is no longer fully visible, a substantial portion of
the previously selected toolbar being substantially hid-
den by the toolbar just chosen by the user.

2. The method of claim 1, wherein the graphic objects
include buttons that are activated when the user clicks a
select button on a pointing device while a cursor controlled
by the pointing device is positioned over the button.

3. The method of claim 1, wherein each of the toolbars is
provided with a characteristic identification that distin-
guishes that toolbar from at least some of other toolbars
disposed in the stack.

4. The method of claim 3, wherein the characteristic
identification includes at least one alphanumeric character
that is disposed on the toolbar in a position so that said at
least one alphanumeric character is visible when a substan-
tial portion of the toolbar is hidden by a selected toolbar.

5. The method of claim 3, wherein the characteristic
identification comprises a logo that is disposed on the
toolbar in a position so that the logo is visible when a
substantial portion of the toolbar is hidden by a selected
toolbar.

6. The method of claim 5, wherein the logo includes at
least one alphanumeric character.

7. The method of claim 1, wherein a separate toolbar is
added to the stack by enabling the user to select the separate
toolbar with a pointing device and then to drag the separate
toolbar onto the stack.

8. The method of claim 1, further comprising the step of
enabling the user to select the stack with a pointing device
and to drag the stack to an edge of a window on the computer
display screen, docking the stack at said edge.

9. The method of claim 1, further comprising the step of
enabling the user to change an orientation of the stack
between vertical and horizontal, said orientation relating to
a longitudinal dimension of the plurality of toolbars com-
prising the stack.

10. The method of claim 1, further comprising the step of
causing one of the toolbars to slide to a different position in
order to enable the toolbar chosen by the user to become
fully visible.

11. The method of claim 10, further comprising the steps
of causing said one of the toolbars that is sliding to decel-
erate as it approaches a rest position; and causing said
toolbar that is sliding to bounce before stopping.

12. The method of claim 10, further comprising the step
of providing an audible sound that is associated with sliding
said one of the toolbars.

13. The method of claim 1, further comprising the step of
enabling the user to unstack the plurality of toolbars, by
selecting one of the toolbars comprising the stack and
dragging said one toolbar away from the stack, causing said
one toolbar to become a separate toolbar that is no longer a
part of the stack.

14. The method of claim 1, further comprising the steps
of enabling the user to selectively hide the stack along an
edge of a window in the computer display, in an auto-hide
mode wherein only a line of pixels comprising a border of
the stack is visible at the edge of the window; and, enabling
the user to selectively fully display the stack that is hidden
in the auto-hide mode.

15. The method of claim 1, further comprising the step of
autosizing the stack to encompass the group of graphic
objects that is largest within the stack.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 56 of 172

5,644,737

17

16. The method of claim 1, further comprising the steps
of enabling a user to'selectively move the stack into a border
region of a window on the computer display; and, in
response, causing the stack to auto-fit within the border by
adjusting dimensions of the stack and of the graphic objects
fully displayed within any selected toolbar, said stack being
positioned adjacent a window control in the border region.

17. The method of claim 1, further comprising the step of
enabling the user to selectively float the stack on the
computer display, and while the stack is floating, enabling
the user to modify a width and a length of the stack.

18. The method of claim 1, further comprising the step of
enabling the user to use a pointing device to select a graphic
object appearing on the computer display outside of the
stack; and, to drag the graphic object that is selected onto a
toolbar comprising the stack, thereby adding the graphic
object to the group of graphic objects within the toolbar.

19. The method of claim 1, further comprising the step of
enabling the user to select one of the graphic objects
comprising a toolbar and to drag said one graphic object to
another toolbar for association with the group of graphic
objects contained therein.

20. The method of claim 19, further comprising the step
of enabling the user to select one of the graphic objects
comprising a toolbar and to drag said one graphic object to
a position outside of the stack on the computer display,
causing said one graphic object to become separated from
the stack.

21. The method of claim 1, further comprising the step of
enabling the user to select an object visible on the computer
display with a pointing device; and, to drag and drop the
object onto one of the graphic objects comprising the
selected toolbar that is fully visible, thereby activating said
one of the graphic objects and serving as an input to an
action that occurs when said one of the graphic objects is
activated.

22. The method of claim 1, further comprising the step of
enabling the user to select a plurality of properties for the
stack.

23. The method of claim 1, further comprising the step of
displaying a label identifying an object represented by each
graphic object when the user moves a cursor over the
graphic object.

24. The method of claim 1, further comprising the step of
displaying a label identifying a non-selected toolbar when
the user moves the cursor over a visible portion of any
non-selected toolbar.

25. A graphic operating system that is implemented on a
computer, said graphic operating system including graphic
objects that appear on a computer display, comprising:

(a) means for organizing the plurality of graphic objects
into a plurality of generally quadrilaterally shaped
toolbars, each toolbar comprising a group of associated
graphic objects organized in an array;

(b) means for creating a stack of the toolbars on the
computer display so that any selected toolbar substan-

10

15

20

25

30

35

40

45

50

55

18
tially hides a substantial portion of any non-selected
toolbar in the stack; said group of graphic objects in any
selected toolbar being fully visible on the computer
display to a user so that a graphic object within said
group is directly selectable and activatable by the user;
and

(c) means for enabling the user to choose a non-selected
toolbar to become a selected toolbar, including means
for causing the non-selected toolbar thus chosen to
become fully visible so that the graphic objects com-
prising it are visible to the user on the computer display,
and so that a substantial portion of a previously selected
toolbar is hidden by the toolbar that was just chosen by
the user, said graphic operating system thereby reduc-
ing an area of the computer display required for dis-
playing the groups of graphic objects comprising the
toolbars in the stack.

26. The graphic operating system of claim 25, further
comprising a central processing unit that is coupled to the
computer display, and memory for storing a plurality of
program instructions, wherein the means for organizing,
means for creating, and means for enabling are effected on
the computer by executing the plurality of program instruc-
tions with the central processing unit.

27. The graphic operating system of claim 25, further
comprising docking means for enabling the user to select the
stack and position it at an edge of a window on the computer
display where it remains docked.

28. The graphic operating system of claim 25, further
comprising sizing means that enable the user to graphically
alter dimensions of the stack.

29. The graphic operating system of claim 25, wherein the
sizing means further enable the user to float the stack, and
to change its relative horizontal and vertical dimensions
while it is floating.

30. The graphic operating system of claim 25, further
comprising means for animating one of the toolbars to
enable the toolbar chosen by the user to become fully
visible, so that said one of the toolbars slides across the stack
and decelerates to a stop, with an accompanying audible
sound.

31. The graphic operating system of claim 25, further
comprising means for adding and removing a selected
graphic object respectively to and from the groups of
graphic objects comprising the toolbars in the stack, by
dragging and dropping the selected graphic object.

32. The graphic operating system of claim 25, further
comprising means for adding and removing a specific tool-
bar respectively to and from the plurality of toolbars in the
stack, by dragging and dropping the specific toolbar.

33. The graphic operating system of claim 25, further
comprising means for autosizing the stack to accommodate
a largest of the plurality of toolbar comprising the stack.

E I T I .

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 57 of 172

Exhibit D

o e MR A

US006263352B1
a2z United States Patent (10) Patent No.: US 6,263,352 B1
Cohen 5) Date of Patent: Jul. 17, 2001
(54) AUTOMATED WEB SITE CREATION USING 57 ABSTRACT
TEMPLATE DRIVEN GENERATION OF
ACTIVE SERVER PAGE APPLICATIONS A computer-implemented system is designed to assist a
merchant in setting up an electronic online storefront that is
(75) Inventor: Michael A. Cohen, Seattle, WA (US) customized to the merchant’s business, without requiring the
))) merchant to program. The system employs a store builder
(73) Assignee: Microsoft Corporation, Redmond, WA wizard to guide a merchant through a series of question-
(Us) naires designed to extract information pertaining to the
hant’s business. Th tem furth 1

(*) Notice: Subject to any disclaimer, the term of this ferchanl s DUSIAess. he Sysiem furtier Srpoys d pase
. . generator to create active server pages (ASPs) that form the

patent is extended or adjusted under 35 . .
U.S.C. 154(b) by 0 days. customized storefront. The page generator creates the active
server pages from a set of templates that are generic to
(21) Appl. No.: 08/970,217 formation of an online stor.efront. The templates are Wri.tten
as an extension to the active server page technology in a
(22) Filed: Nov. 14, 1997 combination of hypertext language and scripting language.
s Int. CL7 GO6F 17121: s The active server templates specify an additional, higher
(L) Int. CLY s 7/21; GOGF 15/16 order scripting level that distinguishes a second level of code
(52) U..S. Cl 707/513, 707/501, 709/203 by a new delimiter. During creation of the storefront, the
(58) Field of Searchcccocovvvvneene 707/500—531; page generator reads each active server template file and
709/200-232; 705/1-5, 26; 706/45-47; converts it to a scripting program having executable lines of
345/326-338 code derived from the higher-order level of instructions
(56) References Cited denoted by the new delimiters. T’he page generator then
executes the scripting program using the merchant data as
U.S. PATENT DOCUMENTS input to produce a customized set of active server pages. The
6,035,119 * 3/2000 Massena et al. woocveroeroocne. 7171~ Tesulting active server pages contain the hypertext language
6,055,541 * 4/2000 Solecki et al. ..coorvrrrrerrre 7077103 and the lower-order level of instructions in the scripting

* cited by examiner

Primary Examiner—Hosain T. Alam
Assistant Examiner—Alford W. Kindred
(74) Antorney, Agent, or Firm—Lee & Hayes, PLLC

M;rchant 1
Computer

Store Buildér
Module

Merchant 1

F m

Web
L Browser
—_—

language denoted by the original delimiters. The active
server pages are stored together to form an active server
application customized to the merchant’s storefront.

17 Claims, 7 Drawing Sheets

40
a

Merchant 2
Computer

46 h

/52

Storefront Create
Store Internet Service
/ Front Provider Computer
T
42 Store Builder - 56
7 Module
T Merchant 2 - 58
Storefront
Order for /
Merchant 1 Order for J
, Merchant 2
/
/ |
|
\
— . \
e
Customer 1 Customer 2 Customer N
Computer Computer Computer

1)\H ‘Web | ‘ " Web
Browser Browser

Web
Browser

62(N)

/ /
/ _/
60(1) 622) k 60(2)

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 59 of 172

U.S. Patent Jul. 17, 2001 Sheet 1 of 7 US 6,263,352 B1

_ﬁ(zz Active
| o4 Server
Page
Active L{| (asp)
Server Page L
Template Generator
L (.ast)
| Active o8
Server /
App
(.asa)
N

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 60 of 172

U.S. Patent

Jul. 17, 2001 Sheet 2 of 7

Start

Read AST File

Convert AST File to
crlptmg Program

32

i

ﬁj

Program

Store Output as ASP 36
F|Ie

[Execute Scrlptlng

US 6,263,352 Bl

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 61 of 172

U.S. Patent Jul. 17, 2001 Sheet 3 of 7 US 6,263,352 B1

— 44
/

Merchant 1)

Computer

Module

A

42

Order for
Merchant 1

Store Builder | }— 46

Merchant 1 — 48

Storefront
N JAN

40
50 2

Merchant 2
Computer

Web
Browser

54

52
Create
Store (Internet Service

Front Provider Computer

Store Builder | |- 56

Module
a N
Merchant 2 — 58
Storefront
J
Order for _ y

Merchant 2

\

Customer 1\
Computer

62(1)

Web
Browser

J
60(1) / 62(2)

Customer 2\ Customer N
Computer Computer
Web Web — 62(N)
tBrowser Browser
\ 60(2) B60(N)

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 62 of 172

US 6,263,352 Bl

Sheet 4 of 7

Jul. 17, 2001

U.S. Patent

pieoghoy 88 18 98

G8

ejeqg S8|NPoN

swelboig woysAs

uonesiddy mczm_waog

weiboid Buy10

aoeU9U|
BALIQ
[eando

20elI9]U|
HIOMJSN

aoeus)U|

uod [euss 8AlA ¥sIq BAlIg

onaubey || ¥sig pieH

LI Tr,
b L - M

Jeydepy ﬂ
O3pIA

aoepa| F aoeLB|

nun Buissenoid

0L b o

88

ejeg weiboig

(18 h

S9INPON

L weiboid 18y)0

(98 sweiboid u

uoneoljddy

.
(g8
wa)sAg Bunesadp

16 - AT) B 7]

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 63 of 172

U.S. Patent Jul. 17, 2001 Sheet 5 of 7 US 6,263,352 B1
e .)
Operating System | — 85
(Internet Information Services
L— 110
' ,
Store Builder Module | — 46

112 — | | [Store Builder J
Wizard Pipeline T 114
Configurator
24 \““\-! Page Generator g

N

112 46 120
140 Generated Site
— 132 SQL | 142
L 122 Loader > [—
N~
| 138 |
L 24 — 134
Wizard | {- 124 sab a
! .asp
Seq. Page I | L
a ——— Generator S
|
| - 136
ASP |
RI lW .| Wizard Site | — 128 app
Generator
114
— 126
scf Pipeline | — 130
Configurator Lo

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 64 of 172

US 6,263,352 Bl

Sheet 6 of 7

Jul. 17, 2001

U.S. Patent

PSlL —

061 —

|
|
|
|

|

|

Xe4
NN
12Ul
ssalppy

:Zeun
ssalppy

=llTy
ssalppy

:uonduosaq
2103

| :owen ai01s

UoiBWIOU| JUBYDIDWN

=

Jalojdx3 Jaulelu| YOsOouoIN -- PIEZIA Japling m:oym;

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 65 of 172

US 6,263,352 Bl

Sheet 7 of 7

Jul. 17, 2001

U.S. Patent

S —

:40j0D)
»’: vmm; yuipadAH
110j0D)
k}: m:_m_ punoibyoeqg
h’: ¥oeig | 10j0D Juo4
w’: _m:i -adA] juo4

8lAIS

.

Jalo|dx3 J18uisju| YOSOIOIN -- PIBZIAA Jopjing 8101S ;

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 66 of 172

US 6,263,352 B1

1

AUTOMATED WEB SITE CREATION USING
TEMPLATE DRIVEN GENERATION OF
ACTIVE SERVER PAGE APPLICATIONS

TECHNICAL FIELD

This invention relates to computer network servers, such
as Internet servers. More particularly, the invention relates to
sever operating systems that enable generation of active
server page applications, which are used to support Web
sites on the Internet, from active server templates.

BACKGROUND

Online commerce is experiencing dramatic growth in
recent years. Merchants are developing sites on the World
Wide Web (or simply “WWW?” or “Web”) at a rapid pace.
With Web sites in place, consumers can access and order
goods and/or services electronically over the Internet from
the comfort of their own homes or offices. It is becoming
fairly common for a consumer to browse a merchant’s
catalog online, select a product, place an order for the
product, and pay for the product all electronically over the
Internet.

Merchants want Web sites that are customized to their
product line. Ideally, merchants might like to design their
own Web site to create a desired shopping atmosphere
suitable for their products and services. Unfortunately, most
merchants do not have the technical expertise to create and
maintain a Web site on the Internet. As a result, merchants
typically hire independent consulting firms to create and/or
manage Web sites on the merchants’ behalf

It would therefore be beneficial to design a system that
permits a merchant to create its own Web site without
requiring the merchant to possess software design and
programming skills.

To aid the following discussion, it might prove useful to
provide additional background information on how
resources are formatted and rendered over the Internet.
Resources available on the Internet are most commonly
presented as hypertext. “Hypertext,” also referred to as
“hypermedia,” is a metaphor for presenting information in
which text, images, sounds, and actions become linked
together in a complex, non-sequential Web of associations
that permit a user to browse through related topics, regard-
less of the presented order of the topics. Hypertext content
is widely used for navigation and information dissemination
on the Web. A “Web browser” is normally used to retrieve
and render hypertext content from the Web.

Hypertext content is commonly organized as documents
with embedded control information. The embedded control
information includes formatting specifications, indicating
how a document is to be rendered by the Web browser. In
addition, such control information can include links or
“hyperlinks,” which are symbols or instructions telling the
Web browser where to find other related VWeb documents
on the Internet.

Hypertext content is commonly written in a “markup
language.” “SGML” (Standard Generalized Markup
Language) is one such hypertext language, defined formally
as “a language for document representation that formalizes
markup and frees it of system and processing dependen-
cies.” SGML is a language for describing the structure of
documents and for describing a tagging scheme to delineate
that structure within text.

For creating hypertext content, Web documents utilize a
subset of SGML called “HTML” (Hypertext Markup

10

15

20

25

30

35

40

45

50

55

60

65

2

Language). An HTML textual document can be thought of
as plain text that contains formatting instructions in the form
of HTML markup codes or “tags.” Tags tell Web browsers
how to render and print documents, and are also used to
specify hyperlinks.

The following is a simple example of a portion of an
HTML document containing a single hyperlink:

Microsoft has a Web page with the latest <A HREF=
“HTTP://www.microsoft.com/upgrades”> upgrades</
A> to its popular word processing program.

The angled brackets define hypertext tags. When rendered
by a Web browser, the word “upgrades” would appear
highlighted and/or underlined to the user, and the text within
the angled brackets would not appear at all, as follows:

Microsoft has a Web page with the latest upgrades to its

popular word processing program.

By clicking on the highlighted keyword “upgrades,” the
user can instruct the Web browser to activate the underlying
URL. In this case, the underlying URL is to an HTTP
(hypertext) document located at host computer
“www.microsoft.com,” having the file name “upgrades.”

Hypertext usage is not limited to the Internet. Various
multimedia applications utilize hypertext to allow users to
navigate through different pieces of information content. For
instance, an encyclopedia program might use hyperlinks to
provide cross-references to related articles within an elec-
tronic encyclopedia. The same program might also use
hyperlinks to specify remote information resources such as
Web documents located on different computers.

Microsoft Corporation has recently introduced a technol-
ogy referred to as “Active Server Pages.” An active server
page, or “ASP”, allows a user to write Web pages using a
combination of a hypertext language (e.g., HTML) and a
scripting language, such as Visual Basic from Microsoft
Corporation or Java™ from Sun Microsystems. As an
example, the following ASP file contains scripting language
to define the colors used in the web page for the background,
hyperlinks, and text.

<HTML>

<BODY
bgceolor=<%=Application(“color _bgcolor”)%>
link=<%=Application (“color_ link”)%>
text=<%=Application((“color__text”)%>

>

<P>Colored text here.

</BODY>

</HTML>

The hypertext terms are set apart by the angled brackets
“<” and “>” such as “<HTML>" and “<BODY>". The
delimiters “<%” and “%>" denote the instructions in the
scripting language. When the ASP file is read and rendered
by a Web browser, the scripting instructions within the
delimiters are executed to fill in the background color, link
color, and text color. The result is a familiar hypertext
document.

Active Server Pages are described in documentation
available from Microsoft’s Web site “www.microsoft.com”,
under the section Internet Information Services. This text is
hereby incorporated by reference.

SUMMARY

This invention provides a computer-implemented system
that enables a user to create a web site that is customized to
the user’s needs without requiring the user to program. As
one particular example, the system is configured to assist a

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 67 of 172

US 6,263,352 B1

3

merchant in setting up an electronic online storefront that is
customized to the merchant’s business.

According to one aspect of this invention, the system
employs a store builder wizard to guide a merchant through
a series of questionnaires designed to extract information
pertaining to the merchant’s business. For example, the
questionnaires might be written as a series of HTML docu-
ments that require the merchant to enter data concerning the
business’ address, inventory, pricing, preferred method of
payment, and so forth. The answers to the questions are
stored in a data file.

The system further employs a page generator to create
active server pages (ASPs) that form the customized store-
front. The page generator creates the active server pages
from a set of templates that are generic to formation of
online storefronts. The page generator uses the merchant
data collected by the store builder wizard as input to the
templates to thereby convert the templates to ASPs that are
customized according to the merchant’s input. The active
server pages are stored together to form an active server
application that supports the merchant’s storefront. In this
manner, the merchant merely enters data through a user-
friendly wizard interface and a customized storefront is
automatically created. The merchant is not required to have
any programming skills.

According to another aspect of this invention, the tem-
plates are written as an extension to the active server page
technology. The templates, which are referred to as “active
server templates”, are written in a combination of hypertext
language and scripting language. The active server tem-
plates are thereby akin to active server pages. However,
unlike ASPs, the active server templates specify an
additional, higher order scripting level that distinguishes a
second level of code by a new delimiter.

During creation of the storefront, the page generator reads
an active server template file and converts it to a scripting
program having executable lines of code derived from the
higher-order level of instructions denoted by the new delim-
iters. The page generator then executes the scripting pro-
gram using the merchant data as input to produce a custom-
ized active server page. The resulting active server page
contains the hypertext language and the lower-order level of
instructions in the scripting language denoted by the original
delimiters.

In the described implementation, the store builder wizard
and page generator are embodied in a server operating
system that executes on a network server. The store builder
wizard and page generator can be accessed remotely over
the Internet using a Web browser. In this arrangement, the
merchant can access the host network server and enter the
merchant data. The host server creates a custom storefront
from the merchant data, and thereafter manages the store-
front on behalf of the merchant.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagrammatic illustration of a computer-
implemented Web page generation system.

FIG. 2 is a flow diagram having steps in a method for
transforming active server templates into active server
pages.

FIG. 3 shows an online commerce system as one possible
environment in which the page generation system might be
used to generate merchant storefronts.

FIG. 4 shows a host computer that can be configured to
implement the page generation system.

10

15

20

25

30

35

40

45

50

55

60

65

4

FIG. 5 is a block diagram showing the page generation
system implemented in software as part of a server operating
system on the host computer of FIG. 4.

FIG. 6 shows a system software architecture for a store
builder module that implements the page generation system
used to build merchant storefronts.

FIGS. 7 and 8 show examples of two wizard pages that
guide a merchant through a series of questions to collect data
pertaining to the merchant’s business.

DETAILED DESCRIPTION

Web sites on the Internet are commonly formed from a set
of one or more Web pages. Individual Web pages are
typically configured as a hypertext document, such as an
HTML document. As noted in the Background, a recent
technology enables a Web page to be configured as an
“active server page”, or “ASP”. An active server page is
written in a combination of a hypertext language (e.g.,
HTML) and a scripting language, such as Visual Basic
Script (or “VBS”) or JScript from Microsoft Corporation,
per, python, REXX, or tcl. When a browser requests an ASP,
the scripting language is executed to produce a Web page in
the form of a hypertext document that can be rendered by the
browser.

One aspect of this invention concerns creation of Web
pages that may be used in a Web site. More particularly, one
inventive aspect pertains to a computer-implemented system
that enables a user to input information pertaining to a Web
site and then automatically generates a set of Web pages
based upon the information. In the context of an online
business, the system permits a merchant to create its own
customized online storefront simply by inputting data per-
taining to its business. The merchant needs no special
programming skills to build the storefront.

At the heart of the site creating system is a page genera-
tion system that enables automatic production of Web pages
using site-relevant data as input. The page generation system
generates custom Web pages from templates that are generic
to a variety of Web sites.

General Page Generation System

FIG. 1 shows a computer-implemented page generation
system 20 that generates Web pages from templates. In the
preferred implementation, the Web pages are written as
active server pages. The page generation system 20 includes
a library of templates 22 and a page generator 24 that
converts one or more of the active server templates 22 into
multiple active server pages 26 and an active server appli-
cation 28. Together, the active server pages 26 (designated
as “.asp”) and the active server application 28 (designated as
“.asa”) form an ASP application, wherein each ASP appli-
cation consists of a single global active server application 28
and multiple active server pages 26.

The templates 22 are written in a combination of hyper-
text language (e.g., HTML) and scripting language (e.g.,
VBS or JScript), which are the same two languages used in
active server pages. The templates are referred to as “active
server templates” or “ASTs”. Unlike ASPs, however, the
active server templates specify an additional, higher order
scripting level that contain instructions denoted by a new
delimiter pair “<%%” and “%%>". The new delimiters
distinguish the higher order scripting level from the original,
lower order scripting level that is denoted by the delimiter
pair “<%” and “%>". Due to the different delimiters, the
higher order scripting level can be executed independently
of the lower order scripting level. Consider the following
AST file:

Case 2:10-cv-00825-JLR

Document 1 Filed 05/18/10 Page 68 of 172

US 6,263,352 B1

<HTML>
<BODY

<%%it Item.SpecifyColors then% %>
bgeolor=<%=Application(“color__bgcolor”)%>
link=<%=Application(“color__link”)%>
text=<%=Application(“color__text”)%>

<%% end if %%>

>

<P>Colored text here.

</BODY>

<HTML>

The AST file resembles the example ASP file described in
the Background, except that it contains an additional level of
scripting code in the form of an “if statement™ set apart by
the delimiters “<%%” and “%%>". The “if statement” can
be executed separate from the original scripting code per-
taining to color selection of the background, hyperlinks, and
text, as denoted by the delimiters “<%” and “%>".

FIG. 2 shows a method implemented in the page generator
24 to transform the active server template 22 into a corre-
sponding active server page 26. At step 30, the page gen-
erator 24 reads the AST file from memory. The page
generator 24 then converts the AST file to a scripting
program (step 32). As one example, the page generator 24
turns every line in the AST file into a print statement, except
the higher order lines of code surrounded by the “<%%” and
“%%>" delimiters. The following scripting program is pro-
duced:

Print “<HTML>"

Print “<BODY”

if Item.SpecifyColors then

Print

“bgcolor=<%=Application(“color_bgcolor”)%>"

Print “link=<%=Application(“color_ link”)%>"

Print “text=<%=Application(“color__text”)%>"

end if

Print “>”

Print “<P>Colored text here.”

Print “</BODY>"

Print “</HTML>"

At step 34, the page generator 24 executes the scripting
program. The property “Item.SpecifyColors™ is a data item
that is input to the program. In the context of Web site
generation, this property is obtained from the user. Assum-
ing the property “Item.SpecifyColors” is true, executing the
scripting program would yield the following output:

<HTML>

<BODY

bgeolor=<%=Application(“color__bgcolor”)%>
link=<%=Application(“color__link)%>
text=<%=Application(“color__text”)%>

>

<P>Colored text here.

</BODY>

<HTML>

This output is stored as an ASP file (step 36 in FIG. 2).
The ASP file can later be retrieved and rendered to HTML
by executing the lines of code denoted the “<%” and “%>"
delimiters. The resulting HTML is then passed to a browser,
which renders the HTML on the screen.

Exemplary Environment

For purpose of continuing discussion, the page generation
system is described within an exemplary environment of

10

20

30

35

40

45

50

55

60

65

6

online commerce. In this environment, a merchant desires to
create an online storefront that is customized to its business.
It is noted, however, that the page generation system of
FIGS. 1 and 2 can be used in contexts other than the online
commerce environment.

FIG. 3 shows an online commerce system 40 in which
customers shop for goods and services from merchants over
the Internet 42. The online commerce system 40 exhibits
two possible scenarios. One scenario is that the merchant
creates and manages its own online storefront. Merchant 1
represents this case. A host computer 44, which resides at
merchant 1, is loaded with a store builder module 46 that
aids the merchant in creating an online storefront. The
merchant enters data relevant to its business and the store
builder module 46 generates a storefront 48 that is custom-
ized to the merchant’s business based on the entered data.
The merchant storefront 48 is kept and managed at the
merchant’s computer 44.

The second scenario is where a merchant has no expertise
in managing an online storefront. Hence, the merchant relies
on the expertise of an Internet Service Provider (ISP).
Merchant computer 50 and ISP computer 52 represent this
case. The ISP computer 52 is configured with the store
builder module 56. The merchant uses a local Web browser
54 to remotely access the store builder module 56 on the ISP
computer 56 to enter data pertaining to the merchant’s
business. The store builder module 56 creates a merchant’s
storefront 58 based on the data submitted by the merchant
over the Internet 42. The storefront 58 is maintained at the
ISP computer 52.

The customers access the storefronts electronically over
the Internet 42 from their computers, as represented by
customer computers 60(1), 60(2), . . ., 60(N). Each customer
computer is configured with a Web browser 62(1),
62(2), . . ., 62(N). To shop and order goods from merchant
1, a customer (e.g., customer 1) uses his/her Web browser to
access the merchant storefront 48 maintained on the mer-
chant host computer 44. To shop and order goods from
merchant 2, a customer (e.g., customer 2) uses the Web
browser to access the merchant storefront 58 maintained on
the ISP host computer 52.

FIG. 4 shows an example implementation of a host
computer, such as the merchant host computer 44 or the ISP
host computer 52. The host computer is a general purpose
computing device in the form of a conventional personal
computer 70 that is configured to operate as a host network
server. The server computer 70 includes a processing unit
71, a system memory 72, and a system bus 73 that couples
various system components including the system memory
72 to the processing unit 71. The system bus 73 may be any
of several types of bus structures including a memory bus or
memory controller, a peripheral bus, and a local bus using
any of a variety of bus architectures. The system memory 72
includes read only memory (ROM) 74 and random access
memory (RAM) 75. A basic input/output system 76 (BIOS)
is stored in ROM 74.

The server computer 70 also has one or more of the
following drives: a hard disk drive 77 for reading from and
writing to a hard disk, a magnetic disk drive 78 for reading
from or writing to a removable magnetic disk 79, and an
optical disk drive 80 for reading from or writing to a
removable optical disk 81 such as a CD ROM or other
optical media. The hard disk drive 77, magnetic disk drive
78, and optical disk drive 80 are connected to the system bus
73 by a hard disk drive interface 82, a magnetic disk drive
interface 83, and an optical drive interface 84, respectively.
The drives and their associated computer-readable media

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 69 of 172

US 6,263,352 B1

7

provide nonvolatile storage of computer readable
instructions, data structures, program modules and other
data for the personal computer 20.

Although a hard disk, a removable magnetic disk 29, and
a removable optical disk 31 are described, it should be
appreciated by those skilled in the art that other types of
computer readable media can be used to store data. Other
such media include magnetic cassettes, flash memory cards,
digital video disks, Bernoulli cartridges, random access
memories (RAMs), read only memories (ROM), and the
like.

A number of program modules may be stored on the hard
disk, magnetic disk 79, optical disk 81, ROM 74, or RAM
75. These programs include an operating system 85, one or
more application programs 86, other program modules 87,
and program data 88. A user may enter commands and
information into the personal computer 70 through input
devices such as keyboard 90 and pointing device 92. Other
input devices (not shown) may include a microphone,
joystick, game pad, satellite dish, scanner, or the like. These
and other input devices are often connected to the processing
unit 71 through a serial port interface 96 that is coupled to
the system bus 73, but may be connected by other interfaces,
such as a parallel port, gamc port, or a universal serial bus
(USB). A monitor 97 or other type of display device is also
connected to the system bus 73 via an interface, such as a
video adapter 98. In addition to the monitor, personal
computers typically include other peripheral output devices
(not shown) such as speakers and printers.

The server computer 70 is connected to the Internet 42
through a network interface or adapter 100, a modem 102,
or other means for establishing communications over the
Internet. The modem 102, which may be internal or external,
is connected to the system bus 73 via the serial port interface
96.

FIG. 5 shows an exemplary implementation in which the
store builder module 46 (or 56) is implemented within the
operating system 85 on the host server computer 70. The
server computer 70 runs a server operating system, which is
preferably a Windows brand operating system from
Microsoft Corporation. One preferred operating system is
the Windows NT operating system. The operating system 85
includes an Internet Information Services component 110
that provides the functionality to support a wide variety of
Internet services. The store builder module 46 is integrated
into the Internet Information Services component 110. The
store builder module 46 includes a store builder wizard 112,
the page generator 24, and a pipeline configurator 114.

System Software Architecture

FIG. 6 shows the general system software architecture for
the store builder module 46, which takes input from a
merchant and generates a customized Web site storefront
120. The store builder wizard (SBW) 112 guides a merchant
through a series of step by step instructions for entering data
pertaining to the merchant’s business. In one
implementation, the SBW 112 is configured as a set of active
server pages 122 which are ordered by a sequencer 124 to
present a series of user interface screens that ask various
questions designed to extract information from the mer-
chant. For instance, the ASPs 122 are transformed when
rendered to a series of HTML documents that require the
merchant to enter data concerning the business’ address,
inventory, pricing, preferred method of payment, and so
forth.

FIGS. 7 and 8 show examples of two SBW questionnaire
pages shown on a display 150. FIG. 7 shows the “Merchant
Information” page 152, which pertains to general informa-

10

15

20

25

30

35

40

45

50

55

60

65

8

tion about the merchant, such as business name, address, and
business description. When the merchant invokes the store
builder wizard 112 (either locally on their own computer, or
remotely via a browser), the “Merchant Information” page
152 is rendered and the merchant enters data into the fields.

FIG. 8 shows the “Style” page 154, which is directed to
storefront properties, such as background color, font color,
and hyperlink color. This page is presented in the sequence
after the “Merchant Information” page 152 of FIG. 7. The
merchant enters preferred color choices and continues onto
the next page.

In addition to the two pages shown in FIGS. 7 and 8, there
are many other possible types of pages. Examples of pos-
sible pages include a “Welcome” page that greets the mer-
chant; a “Locale” page for entry of currency, language,
taxes, and time; a “Product” page for defining a product line;
a “Shipping and Handling” page for entry of preferred
shipment techniques; a “Tax” page for entry of special taxes;
and a “Payment Method” page for selection of preferred
methods of payment.

With reference again to FIG. 6, the merchant’s data
entered to the SBW is collected and stored in a data file 126.
The data file 126 is passed to a wizard site generator 128,
which directs the data to the page generator 24 and the
pipeline configurator 114. The pipeline configurator 114
establishes business rules concerning order processing and
procedures for handling purchases. The rules are generated
based on the merchant data collected by the SBW 112. The
rules are stored in a data file 130 at the generated storefront
120.

The store builder module 46 includes a library of active
server templates 132 that are generic for a variety of
merchant storefronts. The page generator 24 reads the active
server templates 132 and uses them to generate a set of one
or more active server pages 134 and an active server
application 136 while using the merchant data in the data file
126 as input to the templates. The generation of the ASPs
134 from the templates 132 and merchant data 126 is
achieved in the same manner described above with reference
to FIGS. 1 and 2.

The page generator 24 can also generate database-
compatible files that might be used to store products and
services available from the merchant. In this example, the
page generator 24 creates a SQL file 138 that is compatible
with SQL server database software from Microsoft Corpo-
ration. The SQL file 138 is loaded by loader 140 into a
database 142 to serve as a product/service database support-
ing the merchant’s storefront.

The store builder module also enables the merchant to
make changes to their storefront without having to create an
entirely new storefront. For instance, suppose the merchant
wants to change the color of the background from blue to
green. The merchant invokes the store builder wizard and
sequences to the “Style” page 154 in FIG. 8. The merchant
then changes the background field from “blue” to “green”.
This change is stored in the data file 126 and the page
generator 24 generates a new ASP that reflects the back-
ground color change. Accordingly, the merchant can make
occasional changes to its storefront, without needing the
programming skills to directly modify the underlying pages.

Although the invention has been described in language
specific to structural features and/or methodological steps, it
is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or steps described. Rather, the specific features and
steps are disclosed as preferred forms of implementing the
claimed invention.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 70 of 172

US 6,263,352 B1

9

What is claimed is:
1. A computer-implemented system comprising:

an active server template written in a combination of a
hypertext language and a scripting language, the active
server template having two levels of scripting language
that are denoted by first and second delimiters; and

a page generator to execute the active server template by
executing one level of the scripting language denoted
by the first delimiter to produce at least one active
server page, the active server page containing the
hypertext language and the other level of scripting
language denoted by the second delimiter.

2. A computer-implemented system as recited in claim 1,
further comprising an operating system embodied in a
computer-readable medium, wherein the page generator is
incorporated into the operating system.

3. A computer-readable program language embodied on a
computer-readable medium comprising:

hypertext code for specifying hypertext terms; and

scripting code for providing scripting functionality to
form a hypertext page using the hypertext terms, the
scripting code having first and second levels of instruc-
tions denoted by first and second delimiters whereupon
execution of the scripting code’s first level of instruc-
tions denoted by the first delimiter results in an execut-
able structure containing the hypertext code and the
scripting code’s second level of instructions and sub-
sequent execution of the scripting code’s second level
of instructions results in a renderable structure contain-
ing hypertext code.

4. A computer-readable program language as recited in
claim 3, wherein the hypertext code comprises hypertext
markup language (HTML).

5. A computer-readable template embodied on a
computer-readable medium comprising:

hypertext terms that can be rendered by a browser; a first
level of scripting code that upon execution yields a
hypertext page having the hypertext terms, the first
level of scripting code being denoted by a first delim-
iter; and

asecond level of scripting code that upon execution yields
an active server page containing the hypertext terms
and the first level of scripting code, the second level of
scripting code being denoted by a second delimiter
different from the first delimiter to enable execution of
the second level of scripting code independent of the
first level of scripting code.

6. A computer operating system embodied on a computer-
readable medium, the operating system comprising a page
generator to convert an active server template to an active
server page that can be rendered by an Internet browser, the
active server template being written in a combination of a
hypertext language and a scripting language, the page gen-
erator converting the active server template to a scripting
program and executing the scripting program to produce the
active server page.

7. A computer operating system as recited in claim 6,
whereby the scripting language of the active server template
is configured with first and second levels of scripting lan-
guage that are denoted by first and second delimiters, the
page generator executing the first level of the scripting
language denoted by the first delimiter to produce the active
server page.

8. A computer operating system as recited in claim 6,
whereby the scripting language of the active server template
is configured with first and second levels of scripting lan-

10

15

20

25

30

35

40

45

50

55

60

65

10

guage that are denoted by first and second delimiters, the
page generator converting the first level of the scripting
language denoted by the first delimiter to print statements
that form the scripting program.

9. A method for creating a Web site comprising the
following steps:

collecting data pertaining to the Web site;

reading one or more Web page templates that are generic
for a variety of Web sites; and

generating a set of one or more Web pages that form the
Web site based on the site data and the set of generic
Web page templates.

10. A method as recited in claim 9, wherein the Web page
templates comprise active server templates, each active
server template containing a hypertext language and a
scripting language, the scripting language having first and
second levels of instructions denoted by first and second
delimiters, the step of generating comprises the following
steps:

converting the active server templates to a scripting

program having executable lines of code derived from
the first level of instructions denoted by the first delim-
iters; and

executing the scripting program to produce the Web

pages, the Web pages containing the hypertext lan-
guage and the second level of instructions in the
scripting language denoted by the second delimiters.

11. A method as recited in claim 9, wherein the data
collecting step comprises the step of presenting step by step
instructions to a user for entering the data.

12. A method as recited in claim 9, wherein the data
collecting step comprises the step of presenting a series of
user interface screens that enable a user to respond to various
questions, the responses being collected as the data.

13. A method as recited in claim 9, wherein the steps of
collecting, reading, and generating are performed at a first
computing location, and further comprising the step of
submitting the data for collection from an online computing
location that is connected to, but remote from, the first
location.

14. A computer-readable medium comprising computer-
executable instructions for performing the steps in the
method as recited in claim 9.

15. A method for converting an active server template to
an active server page, comprising the following steps:

reading a file containing the active server template, the
active server template containing a hypertext language
and a scripting language, the scripting language having
first and second levels of instructions denoted by first
and second delimiters;

converting the active server template file to a scripting
program having executable lines of code derived from
the first level of instructions denoted by the first delim-
iters; and
executing the scripting program to produce an active
server page containing the hypertext language and the
second level of instructions in the scripting language
denoted by the second delimiters.
16. A method as recited in claim 15, further comprising
the step of storing the active server page in a data file.
17. A computer-readable medium comprising computer-
executable instructions for performing the steps in the
method as recited in claim 15.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 71 of 172

Exhibit E

A | |

United States Patent [

Barnes et al.

US006122558A
[11] Patent Number: 6,122,558
[45] Date of Patent: Sep. 19, 2000

[54]

[75]

—_———
W b
o N =
[Shuter iR

[56]

24 —A_| Operating

AGGREGATION OF SYSTEM SETTINGS 5,455,378 10/1995 Paulson et al.c.ccceeeecuennennnn. 84/610
INTO OBJECTS 5,542,039 7/1996 Brinson et al. ...cccccoeveerercrennnee 395/161
5,682,490 10/1997 Sumino et al.cccceevverereennene 345/352
Inventors: David A. Barnes; Joyce A. Grauman; 5,821,932 10/1998 Pittore ...eevvevvvveveeveieeverreieneens 345/347
Renee Marceau; Virginia E. S.
Howlett, all of Scattle; Kevin OTHER PUBLICATIONS
Schofield, Bellevue; Mark A. Microsoft® Windows™ and MS-DOS® 6, User’s Guide,
Malamufl, Seattle.; Issac J. HEI.ZEI‘, Microsoft Corporation; 1993; Chapter 12, “Customizing
Woodinville; D.anlel F. E. Plastina, Windows,” pp. 122-139.
Redmond; Chris E. Tobey, Seattle; Microsoft® Windows NT™ Advanced Server, Version 3.1,
Rosanne M. Lehmann, Seattle; S . . L - LT
e . ystem Guide, Microsoft Corporation; 1993; “Overview,
William T. Flora, Seattle; Eric L. Van 112-113 and 132-133
Doren, Seattle, all of Wash. Pp- ’
. . . . Primary Examiner—Paul P. Gordon
Assignee: \l\{[};zﬁosoft Corporation, Redmond, Attorney, Agent, or Firm—Banner & Witcoff, Ltd.
[57] ABSTRACT
Appl. No.: 08/935,158 . .
A control panel provides controllers for setting the values of
Filed: Sep. 22, 1997 system settings. Each controller controls a subset of related
L system settings. Scheme objects are provided for encapsu-
Related U.S. Application Data lating values of system settings for a controller. The current
S o values of system settings controlled by a controller may be
Continuation of application No. 08/366,058, Dec. 29, 1994, updated by applying the values held within a scheme. Grand
abandoned. . . .
schemes are provided for aggregating the system settings for
Int. CL7 oo e GO05B 11/01 multiple controllers. Thus, the system settings controlled by
US. Cle oo, 700/83; 700/17 multiple controllers may be updated in a single transaction
Field of Search ..o 700/83, 84,17, by applying a grand scheme to the control panel. Easily
345/353, 352, 347, 333 practiced approaches to applying schemes and grand
schemes to the control panel are provided. Moreover, meth-
References Cited ods for easily creating and editing the contents of schemes
and grand schemes are provided.
U.S. PATENT DOCUMENTS
4,896,291 1/1990 Gest et al. .ooeeeoeeeveeeiereinnen 345/353 42 Claims, 18 Drawing Sheets
10
14 12 L 16
Mouse CPU Keyboard
20 M-22 18
Memory Secondary Storage Video Display

System

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 73 of 172

U.S. Patent Sep. 19, 2000 Sheet 1 of 18 6,122,558

(@
—

\%

- B
g 5
£ a
> Q
v/ 3
oS
N
; 3
[:¥]
on
[
e
- ~
=) .
: S
5 Ry
(5]
(9]
[75]
<t Q
:5 3
g g
3 5 |1£5
= E =
[} P EES
= s | &2

24 — A

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 74 of 172

U.S. Patent

S

SRS
e

Sep. 19, 2000

e

ShEEEEE

,,_:«._é};z‘;i.&;i%b}‘*::;:}

s i
s SRR
Rk i 3
i 5

6,122,558

Sheet 2 of 18

','.'f.g.v VV ' 5 2

SRR e e e et

35

Rl
e,

S

R

i

o

o
e

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 75 of 172

6,122,558

Sheet 3 of 18

Sep. 19, 2000

U.S. Patent

$ O

1448

oty

A%

WAYOS

SWISYOS pUBID

12208

144

a3y

cliielipIN

QWAYDS

QWIAYOS pUBID)

A QWIAYDS
e QwIAY0S
b v\)\ auRyog
T QWAYOS
\\ SWAYOS PURIL)
vy

I9P[O,] SOUWAYDS

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 76 of 172

U.S. Patent Sep. 19, 2000 Sheet 4 of 18

(=D

Apply scheme or
grand scheme to
control panel

L 46

Ascertain which
settings to change

Change ascertained
settings

L~_-48

=D

FIG. 6

6,122,558

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 77 of 172

6,122,558

Sheet 5 of 18

Sep. 19, 2000

U.S. Patent

Vi ‘OIAd

14
|
s[relsd 350D
IO s
) wod PO~~~ Trmmmmmmmmees
<SpUBWIWO)) <SoWIAYdS _ <NUAW JXJU0D
dior> PUEID) JO ISI]> uoo] 3B I9|[onuod> \ AWINOS pueIn) SV STUINSS dABS
dioH \ SowaYOg MIIA npy o

!
(4%

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 78 of 172

U.S. Patent Sep. 19, 2000 Sheet 6 of 18 6,122,558

Open

601 Apply to Control Panel...

______ 08

61— Copy

Throw away

Send >

FIG. 7B

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 79 of 172

U.S. Patent Sep. 19, 2000 Sheet 7 of 18 6,122,558

(=

A J

Drag grand scheme
representation to
control panel
representation

|

Drop grand scheme 64
representation

- 62

=)

FIG. 7C

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 80 of 172

6,122,558

Sheet 8 of 18

Sep. 19, 2000

U.S. Patent

Ve ‘OIAd

0L
|
=N 9]
o
<SaWaYOS
<Spuewruod ﬁ:D—rHV OHNCQO&&Q%\ JO s> \ Trouwayas sV mwc_:ww JABS
dieH SQUIdYDS \ g

L

[

89

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 81 of 172

U.S. Patent Sep. 19, 2000 Sheet 9 of 18 6,122,558

79—_|_Open -~ 74

76— -Apply to Control Panel...

77—-Copy

FIG. 8B

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 82 of 172

U.S. Patent Sep. 19, 2000 Sheet 10 of 18

=)

l

Drag representation
of scheme to
representation of
control panel

- 80

Drop representation
of scheme

- 82

()

FIG. 8C

6,122,558

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 83 of 172

U.S. Patent Sep. 19, 2000 Sheet 11 of 18

()

Establish settings via
controller

Save settings as a
scheme

)

FIG. 94

84

— 86

6,122,558

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 84 of 172

U.S. Patent Sep. 19, 2000 Sheet 12 of 18

(san)

Drag representation
of controller or
scheme to
representation of
target scheme

B8

Drop representation
of controller or
scheme

90

Update settings held
in target scheme

=D

FIG. 9B

6,122,558

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 85 of 172

U.S. Patent Sep. 19, 2000 Sheet 13 of 18

C pn)

Copy an existing
scheme

Modify contents of
the copy

(o

FIG. 9C

94

96

6,122,558

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 86 of 172

U.S. Patent Sep. 19, 2000 Sheet 14 of 18

(s)

Open scheme

98

Modify settings in
scheme

100

Save modified
scheme

102

(o

FIG. 10

6,122,558

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 87 of 172

U.S. Patent Sep. 19, 2000 Sheet 15 of 18

(ban)

Select Save As grand
scheme menu option

Select controllers
from dialog

>

FIG. 114

—_.104

—_-106

6,122,558

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 88 of 172

U.S. Patent Sep. 19, 2000 Sheet 16 of 18

(ban)

Copying existing
grand scheme

Modify settings
within grand scheme

108

310

(rem)

FIG. 11B

6,122,558

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 89 of 172

U.S. Patent Sep. 19, 2000 Sheet 17 of 18

(an)

Drag representation
of control panel to
folder

112

Drop representation
of control panel on
folder

114

Add new object to
folder

116

(o

FIG. 11C

6,122,558

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 90 of 172

U.S. Patent Sep. 19, 2000 Sheet 18 of 18 6,122,558

(" pan)

Drag representation
of grand scheme or
control panel to
representation of
target grand scheme

Drop representation
of control panel or [\~ 128
grand scheme

Update settings of |~ _ 130
target grand scheme

Com)

FIG. 12

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 91 of 172

6,122,558

1

AGGREGATION OF SYSTEM SETTINGS
INTO OBJECTS

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 08/366,058, filed Dec. 29, 1994, now aban-
doned.

TECHNICAL FIELD

This invention relates generally to data processing sys-
tems and, more particularly, to system settings within data
processing systems that control an operating environment.

BACKGROUND OF THE INVENTION

The Microsoft WINDOWS, version 3.1, operating
system, sold by Microsoft Corporation of Redmond, Wash.,
provides a control panel that allows a user to adjust various
system settings, such as the color settings for the graphical
user interface. The control panel includes a number of
controllers that adjust groups of settings. For example, a
separate color controller is provided to adjust the color
settings that are used by the operating system. Each con-
troller generates a dialog box when activated that allows a
user to select the system settings that are controlled by the
controller. The operating system provides default settings
for each of the system settings that are controlled by the
controllers. However, in order to change the system settings,
the user must activate each controller in turn to adjust system
settings which the user wishes to change.

SUMMARY OF THE INVENTION

In accordance with the first aspect of the present
invention, a method is practiced in a computer system
having a video display and a storage device. The computer
system runs an operating system that provides a desktop
environment to a user and a file system. The desktop
environment has associated systems settings that affect the
desktop environment. In this method, a first set of values for
at least a portion of the system settings are stored in the
storage device so that the first set of values is visible in the
file system. A second set of values, for the same portion of
the system settings for which values are stored in the first set
of values, is also stored in the storage device such that the
second set of values is visible in the file system. In response
to a choice by the user between the first set of values and the
second set of values, the system settings are updated to have
the values specified by the chosen set of values.

In accordance with another aspect of the present
invention, a control panel is provided as part of an operating
system that is run on a computer system. The control panel
is used to control values assigned to system settings that
control an operating environment provided to a user. Sets of
values for the system settings are stored in the storage
device. Each set of values includes values for at least a
portion of the system settings. The user selects ones of the
sets of values via a provided interface, and the current
system settings are changed to have the values of the
selected set of values.

In accordance with a further aspect of the present
invention, a control panel is provided for controlling current
values of the system settings. The control panel includes
controllers that are each responsible for controlling current
values of a group of related ones of the system settings. The
sets of values are visible in a file system of the operating

10

15

20

25

30

35

40

45

50

55

60

65

2

system. The user is provided with at least two sets of values
for an identified one of the groups of related system settings.
The user selects one of the two sets of values, and in
response to the user selection, the current values of the
identified group of related system settings are changed to the
values of the set selected by the user.

In accordance with an additional aspect of the present
invention, a grand scheme container object is stored in a
storage device. Scheme objects are stored within the grand
scheme container object. Each scheme object holds a set of
values for a subset of the system settings. The values held in
the scheme objects that are contained within the grand
scheme container object are applied to the current system
settings so that the current system settings assume the values
held in the scheme objects.

In accordance with another object of the present
invention, a method is practiced in a computer system
having an input device and a video display. The computer
system runs an operating system that provides an operating
environment to a user as specified by system settings. A first
object holds values for system settings and has a represen-
tation that is displayed on the video display. A second object
also holds system settings and also has a representation on
the video display. The representation of the first object is
dragged to lie over at least a portion of the representation of
the second object in response to the user using the input
device. The representation of the first object is dropped on
the representation of the second object. In response to the
dropping of the representation of the first object in the
representation of the second object, the values for system
settings are changed in the second object to the values
contained within the first object.

In accordance with a further aspect of the present
invention, a data processing system includes a processor for
running an operating system. The operating system provides
a file system and a desktop environment to the user. The
desktop environment has an associated set of system settings
that affect the environment. The data processing system also
includes storage. The storage holds a copy of the operating
system and a first and second set of values. The sets of
values for a portion of the system settings are visible within
the file system. The data processing system provides a
vehicle for updating the system settings in response to the
user choice of one of the sets of values such that the system
settings assume the values of the set of values chosen by the
user.

In accordance with a final aspect of the present invention,
a system for providing a desktop environment to a user is
provided. The desktop environment has an associated set of
system settings that affect the desktop environment. The
system includes a display component for displaying an
interface to a user as part of the desktop environment. The
display component displays the interface according to sys-
tem settings. The system also includes a first container
holding a first set of system setting values and a second
container holding a second set of system setting values. The
system additionally includes a selection component that
receives selection information, and in response to this selec-
tion information, selects between the first container and the
second container. A change component is provided as part of
the system that is responsible to the selection made by the
selection component to change the system settings to those
held in the selected container.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system that is
suitable for practicing a preferred embodiment of the present
invention.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 92 of 172

6,122,558

3

FIG. 2 is a diagram illustrating an example control panel
window in accordance with the preferred embodiment of the
present invention.

FIG. 3 is an example of a dialog box for a controller for
the control panel of FIG. 2. FIG. 4 is a diagram illustrating
an example of a default systems setting window provided by
the preferred embodiment of the present invention.

FIG. § is a diagram illustrating the hierarchy among a
schemes folder, grand schemes and schemes in accordance
with the preferred embodiment of the present invention.

FIG. 6 is a flow chart illustrating how schemes and grand
schemes are used to change system settings.

FIG. 7A illustrates a menu for a control panel in accor-
dance with the preferred embodiment of the present inven-
tion.

FIG. 7B illustrates an example of a context menu for a
grand scheme.

FIG. 7C illustrates steps performed to drag and drop a
grand scheme on a control panel in accordance with the
preferred embodiment of the present invention.

FIG. 8Ais a diagram illustrating an example of a menu for
a controller in accordance with the preferred embodiment of
the present invention.

FIG. 8B is a diagram illustrating an example of a context
menu for a scheme.

FIG. 8C is a flow chart illustrating the steps performed to
drag-and-drop a scheme onto the control panel in the pre-
ferred embodiment of the present invention.

FIG. 9A is a flow chart illustrating the steps of a first
approach for creating a scheme in accordance with the
preferred embodiment of the present invention.

FIG. 9B is a flow chart illustrating the steps of a second
approach for creating a scheme in accordance with the
preferred embodiment of the present invention.

FIG. 9C is a flow chart illustrating the steps of a third
approach for creating a scheme in accordance with the
preferred embodiment of the present invention.

FIG. 10 is a flow chart illustrating the steps performed to
edit a scheme in accordance with the preferred embodiment
of the present invention.

FIG. 11A is a flow chart illustrating the steps of a first
approach for creating a grand scheme in accordance with the
preferred embodiment of the present invention.

FIG. 11B is a flow chart illustrating the steps of a second
approach for creating a grand scheme in accordance with the
preferred embodiment of the present invention.

FIG. 11C is a flow chart illustrating the steps of an
approach for creating an object holding system settings of a
control panel in accordance with the preferred embodiment
of the present invention.

FIG. 12 is a flow chart illustrating the steps of a second
approach for modifying a grand scheme in the preferred
embodiment of the present invention.

DETAILED DESCRIPTION OF THE
INVENTION

The preferred embodiment of the present invention pro-
vides a user with a quick and easy way to change groups of
system settings in one transaction. Specifically, the preferred
embodiment of the present invention supports the use of
schemes and grand schemes on a per user per desktop basis.
Schemes are entities that hold collections of system settings
for a particular controller of a control panel (i.e., a control
panel applet). Grand schemes are collections of settings for

10

15

20

25

30

35

40

45

50

55

60

65

4

a set of one or more controllers. Through the use of schemes
or grand schemes, a user can update a group of settings
associated with a controller or group of controllers. The user
merely needs to specify the scheme or grand scheme that is
to be used to establish the settings and then request that the
scheme or grand scheme be applied. The user may store a
number of different schemes and grand schemes within the
system. The controllers, schemes, and grand schemes are all
implemented as objects that may be dragged and dropped to
establish and change system settings.

FIG. 1 is a block diagram of a computer system 10 that is
suitable for practicing the preferred embodiment of the
present invention. The computer system includes a central
processing unit (CPU) 12 that controls the activities of the
computer system. The CPU 12 may be a microprocessor or
other type of commercially available CPU. The computer
system 10 also includes input devices, such as mouse 14 and
keyboard 16. A video display 18 is provided in the computer
system 10 to display video output to the user. A memory 20
and a secondary storage device 22 provide storage facilities
within the computer system 10. The secondary storage
device 22 may be a hard disk drive or other suitable
secondary storage device. The memory 20 holds a copy of
an operating system 24. In the preferred embodiment of the
present invention, the operating system 24 is used to store
and manage the control panel, the schemes, and the grand
schemes.

In order to understand the use of schemes and grand
schemes within the preferred embodiment of the present
invention, it is helpful to first review the role the control
panel serves within the computer system 10. As was dis-
cussed in the Background of the Invention, the control panel
is provided by the operating system 24 to enable the user to
adjust system settings. FIG. 2 shows an open control panel
window that includes a separate icon 28A-28I for each
controller. The controllers in FIG. 2 include a color control-
ler 28A, a keyboard controller 28B, a MIDI mapper con-
troller 28C, a desktop controller 28D, a cursors controller
28E, a sound controller 28F, an international controller 28G,
a fonts controller 28H and a mouse controller 28I.

The controllers are sections of code that control the
system settings for groups of related settings. For example,
the desktop controller controls the appearance of the virtual
desktop to the user. When the user positions a mouse cursor
through the use of mouse 14 to point at one of the icons
28A-28I shown in the control panel window 26 and then
double clicks a button of the mouse, a dialog box for
adjusting the system settings of the associated controller is
displayed. FIG. 3 shows an example of the dialog box 30
that is displayed when a user double clicks on the desktop
controller icon 28. The dialog box 30 includes a number of
list boxes, option boxes, and other user interface controls
that allow a user to select the settings that are controlled by
the controller.

The preferred embodiment of the present invention is
employed using the Microsoft Object Linking and Embed-
ding (OLE) 2.0 protocol of Microsoft Corporation. In order
to understand the implementation details of the preferred
embodiment of the present invention, it is useful to first
review some of the concepts employed in Microsoft OLE
2.0 that are relevant to the present invention.

Microsoft OLE 2.0 is a protocol that follows a specific
object model. An “object” in Microsoft OLE 2.0 is a data
abstraction that encapsulates related behavior and attributes.
Typically, an object includes a number of functions and data
structures. Nevertheless, in certain instances an object may

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 93 of 172

6,122,558

5

include only functions. A “container object” is an object that
contains other objects within it.

An “interface” in Microsoft OLE 2.0 is a group of
semantically related functions that are organized into a
named unit (the name being the identifier of the interface).
Interfaces have no instantiation per se (i.e., the definition for
an interface does not include code for implementing the
functions that are identified within an interface); rather,
interface definitions merely specify a set of signatures for
identified functions. “Instantiation” refers to the process of
creating in memory structures that represent an object so that
operations can be evoked on the object. When an object
“supports” an interface, the object provides code for the
functions specified by the interface. Thus, the objects that
support the interfaces are responsible for providing the code
for implementing the functions of the interfaces. The code
provided by an object must comply with the signatures of the
interface definition. The run-time manifestation of an inter-
face instance is a data structure that provides access to the
functions defined for the interface. Interface instances are
referenced by clients of a server object using interface
pointers. Hence, when a client object is provided with an
interface pointer, the client object is able to invoke the
functions of the instance of interface that is provided by the
server object.

Schemes, controllers, and grand schemes are all imple-
mented as objects within the preferred embodiment of the
present invention. These objects support certain interfaces
that will be described in more detail below. Microsoft OLE
2.0 supports the notion of “object classes.” An object class
groups together objects having similar properties and com-
mon behavior.

A scheme in the preferred embodiment of the present
invention is an object that is a document for containing the
settings of a particular controller. For example, a scheme for
the desktop controller may include settings that specify the
desktop pattern, screen saver parameters, wallpaper patterns,
sizing grid parameters, spacing between icons, and cursor
click rate. Each controller is an object that provides code for
implementing the dialog box and displaying the icon asso-
ciated with the controller.

A grand scheme is a special type of container object that
contains one or more scheme objects. The grand scheme is
well-suited for encapsulating system settings that produce a
desktop of a given motif. For instance, a grand scheme might
encapsulate system settings that produce a cowboy motif.
Thus, the desktop settings in the grand scheme might include
a wallpaper with cars on it and a rustic pattern. Moreover,
the sound settings in the grand scheme may include cowboy
cries and the sound of hoofs. The preferred embodiment of
the present invention implements a grand scheme as an
object of the grand scheme class. Similarly, controllers and
schemes are implemented as objects of controller and
scheme object classes, respectively. All of these objects have
associated icons and windows.

In the preferred embodiment of the present invention, the
control panel and the schemes are held within a system
settings folder. When the system settings folder is opened, a
system settings window 32, as shown in FIG. 4, is displayed.
An icon 34 for the control panel and an icon 36 for the
schemes are displayed within the system settings window.
When a user double clicks on the icon 34 for the control
panel, the user sees the control panel window 26 shown in
FIG. 2. When the user double clicks on the schemes icon 36,
the schemes and grand schemes stored within the schemes
folder become visible.

10

15

20

25

30

35

40

45

50

55

60

65

6

A schemes folder is associated with each virtual desktop.
Thus, different users that share a single machine may have
separate sets of schemes and grand schemes or share such
schemes or grand schemes. Moreover, schemes and grand
schemes are stored on a per desktop basis such that a user
having multiple virtual desktops may have a separate set of
schemes and grand schemes for each virtual desktop. The
schemes and grand schemes that are objects visible in the file
system provided by the operating system.

FIG. 5 is a block diagram that illustrates the contents of
an example schemes folder 40. This schemes folder holds
grand schemes 42A, 42B, and 42C, and each of the grand
schemes contains one or more schemes 44. The schemes
folder 40 also holds additional schemes 44 that are not
contained within any grand schemes. Those skilled in the art
will appreciate that the contents of the schemes folder 40
shown within FIG. § are merely illustrative. The schemes
folder 40 may hold different contents, including objects that
are neither schemes nor grand schemes.

Once the schemes or grand schemes are created, they may
be used to adjust the settings within the control panel. FIG.
6 shows a flow chart of the steps performed to adjust the
settings within the control panel using schemes or grand
schemes. Initially, the scheme or grand scheme is applied to
the control panel (step 46). As will be described in more
detail below, there are a number of different vehicles for
applying the schemes or grand schemes to the control panel.
A determination of which settings to change is made (step
47). 1t is worth recalling from above that not all settings in
a grand scheme are necessarily applied and that not all
control panel settings are subject to being changed. Once the
settings to be changed have been ascertained, the settings of
the control panel are changed to reflect those settings
marked as applicable that are encapsulated within the
scheme or grand scheme being applied (step 48). There is
flexibility in that certain system settings within a scheme or
grand scheme may be designated as not applicable. Such
system settings are not applied when the scheme or grand
scheme is applied.

The preferred embodiment of the present invention pro-
vides multiple mechanisms for applying grand scheme to the
control panel (see step 46 in FIG. 6). Those skilled in the art
will appreciate that these three approaches are not intended
to be exhaustive or limiting of the present invention. With
reference to FIG. 7A, a first approach to applying a grand
scheme to the control panel is via menu bar 50 that is
provided by the control panel. The menu bar 50 provided
within the control panel includes a “Schemes™ option 52 that
when activated displays a list of grand schemes 54. The user
may choose any one of the grand schemes displayed within
the list 54 to apply the settings of the selected grand scheme
to the control panel.

Asecond option provided by the preferred embodiment of
the present invention to apply a grand scheme to the control
panel is provided in a context menu 58 (FIG. 7B) of a grand
scheme. The context menu 58 is displayed by double click-
ing on an icon for the grand scheme using mouse 14. One of
the options provided within the context menu 58 is option 60
to apply the grand scheme to the control panel.

The third option for applying a grand scheme to the
control panel in the preferred embodiment of the present
invention is to perform a drag-and-drop operation. FIG. 7C
shows the steps that are performed in such an operation. In
particular, a representation of the grand scheme (such as an
open grand scheme window or an icon for a grand scheme)
is dragged using the mouse 14 to be over a control panel

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 94 of 172

6,122,558

7

representation (such as control panel icon or an open control
panel window) (step 62 in FIG. 7C). The grand scheme
representation is then dropped (step 64) so as to apply the
grand scheme to the control panel.

Hence, it can be seen that the preferred embodiment
provides a number of easily implemented ways to update
control panel settings with grand schemes. Multiple
approaches are provided to suit the user’s preference.

Three approaches are provided by the preferred embodi-
ment of the present invention to apply schemes, as opposed
to grand schemes, to the control panel to change control
panel system settings for given controllers (see step 46 in
FIG. 6). Those skilled in the art will appreciate that the
present invention is not limited to these approaches to
applying the schemes to the control panel. These approaches
are merely illustrative.

In a first approach, menu 66 (FIG. 8A) is used to apply a
scheme to the control panel. Menu 66 is provided by a
controller when opened. Menu 66 includes a schemes option
68 that, when selected by the user, displays a list of schemes
70. The user then selects one of the schemes to apply the
settings of the scheme as the current settings for the con-
troller.

A second approach that may be used to apply a scheme to
the control panel is to activate a context menu 74 (FIG. 8B)
for the scheme. The context menu 74 is activated by clicking
on the icon of the scheme using mouse 14. The context menu
74 includes an option 76 to apply the scheme to the control
panel. When the user selects this option, the scheme is
applied and the system settings are changed in the control
panel.

A third option for applying a scheme to the control panel
is to perform a drag-and-drop operation. FIG. 8C shows the
steps that are performed in such a drag-and-drop operation
for a scheme. First, a representation of the scheme, such as
an open window or an icon, is dragged to a representation of
the control panel (step 80). The representation of the scheme
is then dropped to apply the scheme to the control panel
(step 82).

It should be appreciated that each controller decides
which settings may be encapsulated into a scheme. A con-
troller may have some settings that are not encapsulated into
a scheme. For example, system environment variables, such
as the path to the system root, may be sorted with a
controller but may not be part of a scheme. In addition, a
scheme may include settings that are not applied to the
control panel when the scheme is applied to the control
panel. The settings that are not subject to being incorporated
into schemes and the settings within schemes that are not
subject to being applied to the control panel are disabled
when the scheme is opened.

The above discussion notes that schemes or grand
schemes may be dragged and dropped to realize the chang-
ing of system settings. The Microsoft OLE 2.0 protocol
provides a number of interfaces that facilitate such drag-
and-drop operations. An application registers a window as a
drop target by calling a RegisterDragDrop() function that is
provided by Microsoft OLE 2.0. In addition, the drop target
supports the IDropTarget interface as defined within
Microsoft OLE 2.0 and the drop source supports the IDrop-
Source interface. More details regarding these interfaces can
be found in Inside OLE 2, by Kraig Brockschmidt,
Microsoft Press, 1994.

The preferred embodiment of the present invention pro-
vides a number of different ways for the user to create a
scheme. FIG. 9Ais a flow chart showing the steps performed

10

15

20

25

30

35

40

45

50

55

60

65

8

in one approach for creating a scheme. Initially, the user
establishes the settings to be incorporated into a scheme
using the dialog box 30 (FIG. 3) of a controller (step 84).
The settings are then saved as a scheme (step 86). For
example, the background settings of no pattern and no
wallpaper shown in FIG. 3 may be encapsulated into a
scheme. The settings may be saved as a scheme by invoking
option 72 within the menu 66 of the controller, as shown in
FIG. 8A. Option 72 saves the current settings of a controller
as a scheme.

A second approach to creating a scheme is to perform a
drag-and-drop operation. FIG. 9B is a flow chart illustrating
the steps that are performed to create a scheme in this
fashion. A representation of a controller or scheme (such as
an icon or a window for a controller or a scheme) is dragged
using mouse 14 to a representation of a target scheme (step
88). The representation of the controller or scheme is then
dropped (step 90). The target scheme then updates the
settings encapsulated within it to reflect the settings of the
controller or scheme that has been dropped upon it. In the
Microsoft OLE 2.0 protocol, the target scheme is given a
data pointer to a data object that holds the values of the
settings for the controller or scheme that is dropped on it
(step 92). It accesses this data object to update its own
settings. For example, suppose a user wishes to create a
scheme holding current desktop settings. The user may then
drag the desktop controller 28D (FIG. 2) and drop it in the
scheme folder 36 (FIG. 3) to create a scheme object holding
the same desktop settings.

FIG. 9C is a flow chart showing the steps that are
performed in a third approach to create a scheme object.
First, an existing scheme is copied by choosing an option
such as the “Copy” option 77 in context menu 74 for a
scheme (step 94). The contents of the scheme are then
modified to establish new settings and, thus, create the new
scheme (step 96).

FIG. 10 is a flow chart illustrating the steps the are
performed to modify the settings within a scheme, such as
in step 96 of FIG. 9C. First, the scheme is opened so that a
window is displayed and the contents of the scheme dis-
played (step 98). A scheme may be opened by double
clicking with the mouse 14 on an icon representing the
scheme or by choosing the “open” option 79 (FIG. 8B) from
the context menu 74 of the scheme (step 98 in FIG. 10). The
contents of the scheme are then available and may be
directly manipulated via dialog box 30, which is the same
dialog box that is used by the corresponding controller (FIG.
3). The user may then modify the settings of the scheme
using dialog box 30 (step 100 in FIG. 10). The modified
scheme is saved by choosing the “OK” button that is
available within the dialog box 30 (step 102).

Just as with schemes, there are a number of different
approaches provided by the preferred embodiment of the
present invention for modifying the contents of grand
schemes and for creating grand scheme objects. FIG. 11A is
a flow chart illustrating a first approach to creating a grand
scheme object. In accordance with this first approach, the
user has opened the control panel and has selected option 56
(save settings as grand scheme) from the control panel menu
50 (step 104). This option 56 requests the user to select
which controllers are to have their settings incorporated into
the grand scheme. The user selects the controller using the
dialog provided by option 56 (step 106 in FIG. 11A).

FIG. 11B is a flow chart showing the steps that are
performed in a second approach to create a grand scheme
object. First, an existing grand scheme is copied, such as in

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 95 of 172

6,122,558

9

response to a user selecting copy option 61 (FIG. 7B) from
the grand scheme context menu 58 (step 108 in FIG. 11B).
The user then may modify the settings within the grand
scheme by opening each scheme contained therein and
editing the contents (step 110).

FIG. 11C shows a flow chart of the steps that are per-
formed in an option for creating an object holding system
settings. First, a representation of a control panel is dragged
to a representation of a folder, such as a schemes folder (step
112). The representation is then dropped (step 114), causing
a new object holding the system settings of the control panel
to be added to the folder (step 116).

FIG. 12 shows an approach for modifying the contents of
a grand scheme. In this approach, a controller or scheme is
dragged or dropped onto a grand scheme. In step 126, a
representation of a controller or scheme is dragged to a
representation of a grand scheme. The representation of the
controller scheme is then dropped (step 128). The settings
for the scheme that corresponds with the controller or
scheme that is dropped are then updated to reflect the values
of the controller or scheme that has been dropped (step 130).
Those skilled in the art will appreciate that a grand scheme
may be directly modified by opening its controllers and
modifying the system settings.

While the present invention has been described with
reference to a preferred embodiment thereof, those skilled in
the art will nevertheless appreciate that various changes and
forms in detail may be made without departing from the
intended scope of the present invention as defined in the
appended claims.

What is claimed is:

1. In a computer system having a video display and a
storage device and running an operating system that pro-
vides a desktop environment to a user and a file system, said
desktop environment having associated system settings that
affect the desktop environment, a method comprising the
steps of:

storing in the storage device a first set of values for at least

a portion of the system settings so that the first set of
values is visible in the file system;

storing in the storage device a second set of values for the

same portion of the system settings for which values
are stored in the first set of values so that the second set
of values is visible in the file system; and

in response to a user choice between the first set of values

and the second set of values, updating the systems
settings to have the values of the set of values that has
been chosen by the user.

2. The method of claim 1 wherein the step of storing in the
storage device the first set of values comprises the step of
storing in the storage device the first set of values for all of
the system settings that a user may change so that the first
set of values is visible in the file system.

3. The method of claim 1 wherein at least one of the
system settings affects appearance of the desktop environ-
ment.

4. The method of claim 1 wherein at least one of the
system settings affects behavior of the desktop environment.

5. The method of claim 1 wherein the first set of values
and the second set of values are stored as a first object and
second object, respectively.

6. The method of claim 1, further comprising the step of
storing in the storage device a third set of values for the same
portion of the system settings for which values are stored in
the first and second sets of values, said third set of values
being visible in the file system.

10

15

25

30

40

45

50

55

60

65

10

7. In a computer system having a storage device and
running an operating system that provides an operating
environment to a user, said operating environment being
specified by values of system settings, a method comprising
the steps of:

providing a control panel for controlling current values of

the system settings;

storing sets of values for the system settings in the storage

device, each set including values for at least a portion
of the system settings;

providing an interface for enabling the user to select one

of the sets of values; and

in response to a selection of one of the sets of values by

the user, changing the current system settings to have
the values of the selected set of values.
8. The method of claim 7 wherein the set of values
selected by the user includes values for all of the system
settings whose values are controlled by the control panel.
9. The method of claim 7 wherein the set of values
selected by the user includes values for only a subset of the
system settings whose values are controlled by the control
panel.
10. The method of claim 7, further comprising the step of
providing a user interface for the control panel that enables
the user to select at least one new value for the system
settings.
11. In a computer system running an operating system that
provides an operating environment to a user and a file
system wherein the operating environment has system set-
tings that affect the operating environment, a method com-
prising the steps of:
providing a control panel for controlling current values of
the system settings, the control panel including con-
trollers that each are responsible for controlling current
values of a group of related ones of the system settings;

providing the user with at least two sets of values for an
identified one of the groups of related system settings
such that the sets of values are visible in the file system;
and

in response to a selection by the user of one of the sets of

values, changing the current values of the identified
group of related system settings to the values in the set
of values selected by the user.

12. The method of claimed 11, further comprising the step
of providing the user with additional sets of values visible in
the file system for ones of the groups of related system
settings that differ from the identified group.

13. The method of claim 12, further comprising the step
of, in response to selection by the user of certain of the
additional sets of values, changing the system settings for
the groups of related system settings for which the selected
additional sets of values hold values, to the values held in the
selected additional sets of values.

14. The method of claim 11, further comprising the step
of providing the user with another set of values visible in the
file system for system settings in multiple ones of the groups
of related system settings.

15. The method of claim 14, further comprising the step
of, in response to the user selecting the other set of values,
changing the current values of the multiple groups for which
the other set of values holds values, to the values in the other
set.

16. In a computer system having a storage device and
running an operating system that provides an operating
environment to a user, said operating environment conform-
ing to current system settings, a method comprising the steps
of:

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 96 of 172

6,122,558

11

storing a grand scheme container object in the storage

device;
storing scheme objects within the grand scheme container
object, each scheme object holding a set of values for
a subset of the system settings;

applying the values held in the scheme objects contained
in the grand scheme container object to the current
system setting so as to change the values of the current
system settings to the values held in the scheme objects
of the grand scheme container object.

17. The method of claim 16, further comprising the step
of storing an additional grand scheme container object
holding scheme objects in the storage device.

18. The method of claim 17, further comprising the step
of storing the grand scheme container objects and the
scheme objects in a folder object.

19. In a computer system having an input device and a
video display and running an operating system that provides
an operating environment to a user as specified by system
settings, a method comprising the steps of:

providing a first object holding values for system settings,

said first object having a representation on the video
display;

providing a second object holding system settings, said

second object having a representation on the video
display;

dragging the representation of the first object on the video

display to lie over at least a portion of the representa-
tion of the second object in response to the user using
the input device;

dropping the representation of the first object on the

representation of the second object in response to the
user using the input device;

in response to the dropping of the representation of the

first object on the representation of the second object,
changing the values for system settings in the second
object to the values for system settings in the first
object.

20. The method of claim 19 wherein the second object is
a control panel object that controls current values for the
system settings.

21. The method of claim 20 wherein the first object is a
scheme object holding values for only a subset of the system
settings whose values that are controlled by the control
panel, thereby changing only the subset.

22. The method of claim 20 wherein the first object is a
grand scheme object holding values for all of the system
settings whose values are controlled by the control panel,
thereby changing all of the values.

23. The method of claim 19 wherein the second object is
a grand scheme object containing scheme objects that each
hold values for subsets of the system settings whose values
are controlled by the control panel and the first object is an
additional scheme object that holds values for a subset of the
system settings whose values are controlled by the control
panel.

24. The method of claim 19 wherein the first object is a
grand scheme object and the second object is a control panel
object that controls current values for the system settings.

25. The method of claim 19 wherein both the first object
and the second object are scheme objects.

26. A data processing system comprising:

a processor for running an operating system that provides

a file system and a desktop environment to the user,
said desktop environment having an associated set of
system settings that affect the desktop environment;

w

10

15

20

25

30

35

40

45

50

55

60

65

12

a storage comprising:

(1) a copy of the operating system;

(i) a first set of values for at least a portion of the
system settings so that the first set of values is visible
in the file system;

(iii) a second set of values for the same portion of the
system settings for which values are stored in the
first set of values so that the second set of values is
visible in the file system; and

a vehicle for updating the system settings, in response to
a user choice of one of the sets of values, to have the
values of the set of values that was chosen by the user.

27. The data processing system of claim 26, further
comprising a folder in the storage that holds a first set of
values and the second set of values.

28. A system for providing a desktop environment to a
user, said desktop environment having associated system
settings that affect it, comprising:

a display component for displaying an interface to a user
as part of the desktop environment according to the
system settings;

a first container holding a first set of system settings
values;

a second container holding a second set of system settings
values;

a selection component that receives selection information
and in response selects between the first container and
the second container; and

a change component responsive to the selection compo-
nent for changing the system settings to those held in
the selected container.

29. A computer-readable storage medium for use in a
computer system having a video display and a storage
device and running an operating system that provides a
desktop environment to a user and a file system, wherein
said desktop environment has associated system settings that
affect the desktop environment, said medium holding:

a first set of values for at least a portion of the system
settings wherein the first set of values is visible in the
file system;

a second set of values for the same portion of the system
settings for which values are stored in the first set of
values wherein the second set of values is visible in the
file system; and

a system settings update component for updating the
system settings to have the values of a one of the first
set of values, the second set of values, or that has been
chosen by a user.

30. The computer-readable storage medium of claim 29
wherein the first set of values is stored in a first object and
the second set of values is stored in a second object.

31. A computer-readable storage medium for use in a
computer system having a storage device and running an
operating system that provides an operating environment to
auser that conforms to current system settings, said medium
holding:

a grand scheme container object that holds scheme objects
wherein each scheme object holds a set of values for a
subset of the system settings; and

a component for applying the values held in the scheme
objects in the grand scheme container object to the
current system settings so as to change the values of the
current system settings to the values held in the scheme
objects of the grand scheme container object.

32. A computer-implemented method for modifying an

appearance of a desktop environment of a computer system,

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 97 of 172

6,122,558

13

the desktop environment providing a plurality of parameters,
each parameter settable to values that control the appearance
of an aspect of the desktop environment, the method com-
prising:
receiving from a user a first set of values for the param-
eters;

storing the received first set of values;

receiving from the user a second set of values for the
parameters;

storing the received second set of values;

receiving from the user a selection of either the first set of
values or the second set of values;

when the selection of the first set of values is received
from the user, setting the parameters to the values of
first set of values; and

when the selection of the second set of values is received
from the user, setting the parameters to the values of the
second set of values

whereby the user can specify sets of values and whereby
the computer system sets the parameters to the values
of a set when the user selects that set of values so that
the appearance of the desktop environment is modified
in accordance with the selected set of values.

33. The method of claim 32 wherein the storing of the
received sets of values stores the sets of values using a file
system.

34. The method of claim 32 wherein the user selects a set
of values by dragging and dropping a visual representation
of the set of values over a visual representation of the
parameters.

35. The method of claim 32 wherein the parameters are set
under control of an operating system.

36. The method of claim 32 including changing a value in
the first set of values so that subsequent selection of the first
set results in modifying the appearance of the desktop
environment in accordance with the changed value.

37. The method of claim 32 wherein the parameters are
divided into control groups, each control group having a
controller for setting the values of the parameters of that
control group, and wherein the first set of values is for
parameters of a plurality of control groups.

10

15

20

25

30

35

40

14

38. The method of claim 37 wherein the setting of the
values of the parameters is performed by the controllers for
the plurality of control groups.

39. A computer-readable medium containing instructions
for causing a computer system to modify the appearance of
a desktop environment of a computer system, the desktop
environment providing a plurality of control groups having
parameters, each parameter of a control group settable to a
value that controls the appearance of an aspect of the
desktop environment, each control group having a controller
for controlling the setting of the values of the parameters in
the control group, by:

storing in a file a first set of values for parameters included

in more than one control group;

storing in a file a second set of values for the parameters

included in more than one control group;
receiving from a user a selection of either the stored first
set of values or the stored second set of values;

when the selection of the first set of values is received
from the user, invoking the controllers of the control
groups that include parameters of the first set of values
to set the parameters to the values of first set of values;
and

when the selection of the second set of values is received

from the user, invoking the controllers of the control
groups that include parameters of the second set of
values to set the parameters to the values of second set
of values

whereby the user can select a set of values so that the

values of the parameters of more than one control
group can be set by the selection of the set of values.

40. The computer-readable medium of claim 39 wherein
the user selects a set of values by dragging and dropping a
visual representation of the set of values over a visual
representation of the parameters.

41. The computer-readable medium of claim 39 wherein
the parameters are set under control of an operating system.

42. The computer-readable medium of claim 39 including
changing a value in the first set of values so that subsequent
selection of the first set results in modifying the appearance
of the desktop environment in accordance with the changed
value.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 98 of 172

Exhibit F

case s raonss It oeumen U NRARR TR Ao G

US006542164B2
a2z United States Patent (10) Patent No.: US 6,542,164 B2
Graham @#5) Date of Patent: *Apr. 1, 2003
(549) TIMING AND VELOCITY CONTROL FOR 5,155,806 A 10/1992 Hoeber et al. 395/157
DISPLAYING GRAPHICAL INFORMATION 5,157,768 A 10/1992 Hoeber et al. 395/157
5,169,342 A 12/1992 Steele et al. 434/112
(75) Tnventor: Christopher E. Graham, Redmond, 5,196,838 A 3/1993 Meier et al. .oeeevnnnnnnn. 340/724
WA (US) 5287448 A * 2/1994 Nicol
5,299.307 A * 3/1994 Youngcccceeennnns 345/157
(73) Assignee: Microsoft Corporation, Redmond, WA 5546521 A * 8/1996 Martinez
(US) OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this Macintosh Reference, Apple Computer Inc, pp. 30-31,
patent is extended or adjusted under 35 1991.*
U.S.C. 154(b) by 0 days. Quick Result, Microsoft Word, Version 6.0, 1993, pp. 39-40
and 154-155.*
Thi.s patent is subject to a terminal dis- * cited by examiner
claimer.
Primary Examiner—Chanh Nguyen
(21) Appl. No.: 09/879,479 (74) Antorney, Agent, or Firm—Merchant & Gould P.C.
(22) Filed: Jun. 12, 2001 67 ABSTRACT
(65) Prior Publication Data Time and velocity metrics are used to control when infor-
mation about a graphical object to which a cursor points is
US 2002/0054013 Al May 9, 2002 displayed on a video display. The time metric is used to
o ensure that a non-negligible amount of time passes between
Related U.S. Application Data the time at which the cursor initially points to the graphical
L L bject and the time at which the information about the
63) Continuation of application No. 08/873,855, filed on Jun. 0 . Y . ‘ .
(63) 12, 1997, now Pat. No. 6,281,879, which is a continuation graphical object is displayed on the video display. The time
of application No. 08/709,529, filed on Sep. 6, 1996, now delay helps to eliminate such information being displayed
abandoned, which is a continuation of application No. inadvertently when the user quickly passes the cursor over
08/260,558, filed on Jun. 16, 1994, now abandoned. graphical objects in the video display. In addition, the timing
S51) Int. CL7 oo, G09G 5/00 control facilitates the shortening of the delay when it appears
D / g y pp
(52) US.ClL ..., ... 345/711; 345/157 that the user wishes to browse amongst several related
(58) Field of Searchc.cccoceuvveiine. 345/157, 159 graphical objects that are shown in the video display. For
345/156, 160, 856, 859 711’ 71§ example, when it appears that the user wishes to browse
’ ’ ’ ’ ’ tools on the tool bar, the delay is shortened. The velocity
(56) References Cited metric is used to determine the likelihood that the user

U.S. PATENT DOCUMENTS

4,789,962 A
4,984,152 A
5,140,678 A *

12/1988 Berry et al. 364/900
1/1991 Mullercoovvvvieninnne 364/200
8/1992 Torres

still pointing at

velocity metric
remained below

intended to point to the graphical object and serves to
minimize instances where undesired information about the
graphical object is displayed.

30 Claims, 7 Drawing Sheets

Is cursor

control?
52

hreshold?

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 100 of 172

U.S. Patent Apr. 1, 2003 Sheet 1 of 7 US 6,542,164 B2

10

S~ 14
.~ 18

Mouse
Video
Display

L~ 12
S~ 22

L o
59
o] k=] .
o S 2 Q)
o S8 ~—
$° T
© o < ©
-~ N NN
c
= =~ 2els
o) Q < 0| @©
o & T el
[/ B 4
9 2 845
X o\&

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 101 of 172

U.S. Patent Apr. 1, 2003 Sheet 2 of 7 US 6,542,164 B2

p

window Help
Window Hel

lable
FIG. 2A
Table
FIG. 2B

Tools

Tools

View Insert Format

Edit View Insert Format

B |
12 1|2
T /’—"’) _\' vy
3 3

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 102 of 172

U.S. Patent Apr. 1, 2003 Sheet 3 of 7 US 6,542,164 B2

o=

Determine that
cursor points to a
toolbar control

S~ 42

Set timer trigger
point to 0.7
seconds

L~ 43

Settimerto O
seconds

S~ 44

< Return)

FIG. 3A

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 103 of 172

U.S. Patent Apr. 1, 2003 Sheet 4 of 7 US 6,542,164 B2

o

Receive mouse
message

S~ 45

Determine from
(x,y) coordinates
that cursor points

to a toolbar control

L~ 46

Measure distance
since last mouse
message

(L~ 47

(Return)

FIG. 3B

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 104 of 172

U.S. Patent

No

Apr. 1, 2003

Sheet 5 of 7

Begin

C

US 6,542,164 B2

)

Initiate timer to Run

L~ 48

Timer expires

~J~ 50

Is cursor

Yes

still pointing at
control?

Has
velocity metric

f53

Reset timerto 0
seconds

remained below
hreshold?

51

52

Display tool tip

L~ 54

Set timer trigger point
to 0.1 seconds

-~ 56

(Return

FIG. 4

)

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 105 of 172

U.S. Patent Apr. 1, 2003 Sheet 6 of 7

US 6,542,164 B2

(=

|

Cursoris
positioned to no
longer point at
toolbar control

.~ 58

l

No longer display
tool tip

W~ 60

|

(Return)

FIG. 5

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 106 of 172

U.S. Patent Apr. 1, 2003 Sheet 7 of 7

US 6,542,164 B2

(o

|

Cursor leaves

toolbar ~ 62
4
Clear timer "~ 64

|

(Return)

FIG. 6

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 107 of 172

US 6,542,164 B2

1

TIMING AND VELOCITY CONTROL FOR
DISPLAYING GRAPHICAL INFORMATION

RELATED APPLICATIONS

This is a continuation of U.S. patent application Ser. No.
08/873,855, filed Jun. 12, 1997, now U.S. Pat. No. 6,281,
879, which is a continuation of U.S. patent application Ser.
No. 08/709,529, filed Sep. 6, 1996, now abandoned, which
is a File Wrapper Continuation of U.S. patent application
Ser. No. 08/260,558, filed Jun. 16, 1994, now abandoned,
which applications are incorporated herein by reference.

TECHNICAL FIELD

The present invention relates generally to data processing
systems and, more particularly, to the displaying of graphi-
cal information in data processing systems.

BACKGROUND OF THE INVENTION

Many conventional application programs utilize tool bars.
Tool bars provide the user with a number of tools that assist
the user in performing tasks. Typically, a separate control is
provided for each tool on the tool bar. The control may be
a pushbutton or another graphical object that allows the user
to invoke the desired tool. Often times the controls on the
tool bar have icons on their faces that indicate the nature of
the tool. Unfortunately, as the typical number of controls on
the tool bar has grown for applications, it has become more
and more difficult for the user to discern the nature of the
tool solely from the icons shown as part of the tool bar. As
such, many users have difficulty using the tools on the tool
bar.

SUMMARY OF THE INVENTION

The limitations of the prior art are overcome by the
present invention. In accordance with a first aspect of the
present invention, a method is practiced in a data processing
system having a video display for displaying a cursor that
points to positions on the video display. The data processing
system also includes an input device for manipulating the
cursor. In accordance with this method, it is first determined
that the cursor points to a position within a region on the
video display. A velocity metric of the cursor is measured.
Where the velocity metric does not exceed a predetermined
threshold value, an event is triggered. On the other hand,
where the velocity metric exceeds the predetermined thresh-
old value, the event is inhibited.

In accordance with a second aspect of the present
invention, it is determined that a cursor points to a position
within a region on the video display. A time period metric
that specifies how long the cursor has remained pointing
within the region is measured. A velocity metric of the
cursor within the region is also measured. Based upon these
metrics, a determination is made whether to trigger an event.

In accordance with an additional aspect of the present
invention, a method is practiced in a data processing system
having a video display for displaying a cursor that points to
positions in the video display and an input device for
manipulating the cursor. In accordance with this method, a
graphical object is displayed on the video display. The user
uses the input device, and in response, the data processing
system positions the cursor to point at the graphical object.
A predetermined period of time, such as a time greater than
0.4 seconds, is allowed to pass and then a determination is
made whether the cursor still points at the graphical object.
If it is determined that the cursor still points at the graphical

10

15

20

25

30

35

40

45

50

55

60

65

2

object, information about the graphical object is displayed
adjacent to the graphical object on the video display.

In accordance with another aspect of the present
invention, a method is practiced wherein a tool bar having
tools is displayed on the video display. When the user uses
the input device, the cursor is position to point at a selected
one of the tools on the tool bar. The system waits a
predetermined non-negligible amount of time. The system
also measures a velocity metric of the cursor within the first
graphical object. If the cursor still points at the selected tool
after waiting the predetermined non-negligible amount of
time and the velocity metric has remained below a prede-
termined threshold during the predetermined non-negligible
amount of time, information about the selected tool is
displayed in the video display. The position is adjacent to the
selected tool.

In accordance with a further aspect of the present
invention, a method is practiced in a computer system
having a video display for displaying a cursor that points to
positions on the video display and an input device for
moving the cursor on the video display. In this method, a
first graphical object is displayed on the video display. In
response to the user using the input device, the cursor is
positioned to point at the first graphical object. The system
waits a non-negligible predetermined amount of time. A
determination is made whether the cursor still points at the
graphical object after the non-negligible predetermined
amount of time has passed. Where the cursor still points at
the first graphical object, a number of steps are performed.
These steps include displaying information about the first
graphical object adjacent to the first graphical object of the
video display. The non-negligible predetermined amount of
time is then reset to a substantially shorter amount of time.
A second graphical object is displayed on the video display
and, in response to the user using the input device, the cursor
is positioned to point at the second graphical object on the
video display. The system waits the substantially shorter
amount of time. Where the cursor is still pointing at the
second graphical object after waiting the substantially
shorter period of time, information about the second graphi-
cal object is displayed adjacent to the second graphical
object on the video display.

In accordance with a still further aspect of the present
invention, a data processing system includes a video display
for displaying video data. The video display displays a first
graphical object and a cursor that points to the first graphical
object. An input device is included in this part of the data
processing system for moving the cursor on the video
display. A message generator is provided for displaying
information about the first graphical object. The information
is displayed adjacent to the first graphical object on the video
display when the cursor remains pointing at the first graphi-
cal object for a predetermined non-negligible amount of
time. The message generator includes a comparator and a
message source. The comparator determines whether the
cursors remain pointing at the first graphical object for the
predetermined non-negligible amount of time. The message
source provides and displays information about the first
graphical object adjacent to the first graphical object on the
video display when the comparator determines that the
cursor has remained pointing at the first graphical object for
the specified amount of time.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system that
is suitable for practicing a preferred embodiment of the
present invention.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 108 of 172

US 6,542,164 B2

3

FIG. 2A is a diagram illustrating a tool bar and a tool tip
that is provided for a print button in accordance with the
preferred embodiment of the present invention.

FIG. 2B is a diagram illustrating a tool bar and a tool tip
that is provided for a font list box in accordance with the
preferred embodiment of the present invention.

FIG. 3Ais a flow chart illustrating the steps performed to
initially set a timer when a cursor is positioned over a control
on the tool bar in accordance with the preferred embodiment
of the present invention.

FIG. 3B is a flow chart illustrating the steps performed to
determine the magnitude of the velocity of the cursor when
the cursor is positioned over a control on the tool bar in
accordance with the preferred embodiment of the present
invention.

FIG. 4 is a flow chart illustrating the steps performed to
determine whether a tool tip is to be displayed in the
preferred embodiment of the present invention.

FIG. 5 is a flow chart illustrating the steps performed
when a cursor no longer points within the tool bar in the
preferred embodiment of the present invention.

FIG. 6 is a low chart illustrating the steps that are
performed relative to the timer when the cursor leaves the
tool bar in the preferred embodiment of the present inven-
tion.

DETAILED DESCRIPTION OF THE
INVENTION

The preferred embodiment of the present invention dis-
plays a tool tip when a mouse cursor points to a tool or a tool
bar for a sufficient amount of time and the magnitude of the
velocity of the mouse cursor remains below a predetermined
threshold. A tool tip is a brief textual message, such as a
name of a tool, that identifies the nature of the tool. The
preferred embodiment of the present invention provides a
delay between when the mouse cursor is initially positioned
to point at the tool control on the tool bar and when the tool
tip is displayed. This delay prevents the user from receiving
undesired tool tips when the user inadvertently passes the
mouse cursor over a control on the tool bar. The delay is
sufficiently long (i.e., it is non-negligible) to allow the user
to move the mouse cursor if he does not want to receive a
tool tip. The delay is shortened when an initial tool tip is
displayed so as to allow the user to quickly browse the tool
controls that are available on the tool bar. The magnitude of
the velocity of the mouse cursor is measured to determine
whether the user likely intends to point at the tool to receive
a tool tip or whether the user, instead, is merely passing over
the tool while moving to another destination.

Although the preferred embodiment of the present inven-
tion concerns controlling when tool tips for tools on a tool
bar are displayed, those skilled in the art will appreciate that
the present invention may generally be applied to other
regions of a video display (such as other types of graphical
objects) for which graphical information is to be provided.
It should be appreciated that the present invention may be
applied to both visible and invisible graphical objects.

FIG. 1 is a block diagram of a data processing system 10
that is suitable for practicing the preferred embodiment of
the present invention. The data processing system 10
includes at least one central processing unit (CPU) 12. The
CPU 12 is connected to a number of peripheral devices,
including a mouse 14, a keyboard 16 and a video display 18.
The CPU 12 is also connected to a memory 20 and a
secondary storage device 22, such as a hard disk drive. The

10

15

20

25

30

35

40

45

50

55

60

65

4

memory 20 holds a copy of an operating system 24, such as
the Microsoft Windows, version 3.1, operating system sold
by Microsoft Corporation of Redmond, Wash. The memory
20 also holds a copy of an application program 26. The
implementation of the preferred embodiment of the present
invention will be described below with reference to use of
tool tips within the application program 26. Nevertheless, it
should be appreciated that the tool tips may alternatively be
implemented in the operating system 24 or as a system
resource.

FIG. 2A shows the tool bar 34 that is generated and
displayed on the video display 18 when the application
program 26 is run on the CPU 12. The tool bar 34 includes
a number of controls, such as buttons and list boxes, that
enable a user to access the tools of the tool bar. When the
user positions a mouse cursor 30 over one of the buttons and
clicks the mouse (i.e., quickly depresses and releases a
predefined one of the mouse buttons), the tool associated
with the button is invoked. Similarly, by positioning the
mouse cursor 30 over one of the buttons of the list boxes, a
drop-down list appears, and the user may select one of the
options on the drop-down list using the mouse 14.

The tool bar 34 is created as a window by the application
program 26. The operating system 24 facilitates the defini-
tion of such windows (as is provided in the Microsoft
Windows, version 3.1, operating system). FIG. 2A shows the
mouse cursor 30 pointing to a print button 32 on the tool bar
34. When a user positions the mouse cursor 30 over the print
button 32 and clicks the mouse button, the document cur-
rently displayed in the window of the application program is
printed.

The user interface provided for the application program
24 is logically divisible into a number of windows. One of
these windows is the tool bar 34. In general, each window
of the user interface has a separate window procedure
associated with it. The operating system 24 maintains a
message queue for each program that generates windows.
Accordingly, the application program 26 has its own mes-
sage queue. Since the application program 26 may generate
multiple windows, the message queue may hold messages
for multiple windows. When an event occurs, the event is
translated into a message that is put into the message queue
for the application program 26. The application program 26
retrieves and delivers the message to the proper windows by
executing a block code known as the “message loop.” The
window procedure that receives the message then processes
the message.

Movements of the mouse 14 are reflected in messages that
are placed into the message queue of the application pro-
gram 26. In particular, when a user positions the mouse
cursor 30 with the mouse 14 over a window or clicks the
mouse by depressing one of the mouse buttons within a
window, the procedure for the window receives a mouse
message. The operating system 24 provides a number of
predefined mouse messages. The mouse messages specify
the status of mouse buttons and the position of the mouse
cursor 30 within the window. The position of the mouse
cursor 30 within the window is specified in (X, Y) coordi-
nates relative to the upper left-hand corner of the window.
Thus, when the mouse cursor 30 moves within the tool bar
34, the position of the mouse cursor 30 within the tool bar
is reflected and a mouse message that specifies (X, Y)
coordinates of the mouse cursor relative to the upper left-
hand corner of the tool bar. The window procedure receives
the mouse message and utilizes the information contained in
the message to respond to the mouse 14 activities.

As mentioned above, the application program 26 specifies
the window that constitutes the tool bar 34. The application

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 109 of 172

US 6,542,164 B2

5

program 26 paints each of the controls, including print
button 32, at known locations within the window of the tool
bar 34. When the mouse cursor 30 is positioned within the
tool bar, mouse messages specify the position of the mouse
cursor within the tool bar 34. The mouse messages are sent
to the window procedure that is responsible for the tool bar
window. The window procedure for the tool bar 34 com-
pares the coordinates specified by the mouse message with
the known location of the controls within the tool bar.
Accordingly, the window procedure for the tool bar 34 can
determine whether the mouse cursor 30 is pointing at any of
the controls. When it is determined that the mouse cursor 30
is pointing at one of the controls of the tool bar 34, a tool tip
28 may be displayed if the mouse cursor 30 has remained
pointing at the control for a sufficient period of time and the
magnitude of the velocity of the mouse cursor is below a
predetermined threshold. Hence, in the example shown in
FIG. 2A, the message “Print” is displayed as a tool tip 28,
given that the mouse cursor 30 is pointing to the print button
32.

Tool tips are provided not only for buttons on the tool bar
34 but are also provided for other types of controls. For
example, as shown in FIG. 2B, a mouse cursor 38 points to
a portion of a list box 40 that concerns the font which the
user wishes to utilize. Accordingly, a tool tip 36 is displayed
that includes the text “Font”. It is worth noting that the
mouse cursor 38 changes from an arrow to a cross bar, since
the cursor points to a portion of a list box that contains text
rather than a button as in FIG. 2A.

Tool tips are displayed using text output commands that
are provided by the operating system 24. Specifically, the
ExtTextOut() function that is provided by the Microsoft
Windows, version 3.1, operating system is used in the
preferred embodiment. The format of this function is as
follows:

10

15

20

25

30

6

FIG. 2A) is positioned over one of the controls of the tool
bar 34, a sufficient time has elapsed and the measured
magnitude of the velocity of the mouse cursor 30 is below
a predetermined threshold, the procedure determines the
string that is to be displayed in the tool tip for the control to
which the mouse cursor points. The address of this string is
passed as the lpszString parameter to the ExtTextOut()
function. This function then proceeds to draw the tool tip.

As the rectangle for the tool tip is a clipped rectangle, the
background color may be specified. In the preferred embodi-
ment of the present invention, the background color is
yellow, as specified in red/green/blue (RG3) coordinates as
(255, 255, 128). The size of the rectangle used for the tool
tip is as follows: height equals the height of the text as
specified by the font (i.e., the point of the font) plus 4, and
length equals length of the text plus 4.

The tool tips are displayed at predefined locations relative
to the controls. In general, tool tips are displayed centered
under edit boxes and combo boxes and displayed relative to
tool bar buttons at a position where the upper left-hand
corner of the tool tip rectangle is 2 pixels to the left of the
top left corner of the button and 15 pixels below the hot spot
of the mouse 14. Those skilled in the art will appreciate that
tool tips may be displayed at other locations that are adjacent
to the tools.

The discussion will now focus on the controls for deter-
mining when to display the tool tip. When the mouse cursor
30 is initially positioned to point to a tool bar control (i.e.,
the first time that the mouse cursor points to a control while
it has been in the tool bar 34), the steps shown in FIG. 3A
are performed. Initially, the window procedure for the tool
bar 34 determines that the mouse cursor 30 points to a tool
bar control (step 42 in FIG. 3A). The application program 26
uses a timer to determine whether or not to display a tool tip.
This timer may be a system-provided resource that is

BOOL ExtTextOut(hde, nXStart, nYStart, fuOptions, Ipre, IpszString, cbString, IpDx)

HDC hdg;

int nXStart;

int nYStart;

UINT fuOptions;

const RECT FAR* Iprc;
LPCSTR lpszString;
UINT cbString;

int FAR* IpDx;

/* handle of device context

/* x-coordinate of starting position
/* y-coordinate of starting position
/* rectangle type

/* address of structure with rectangle
/* address of string

/* number of bytes in string

/* spacing between character cells

*/
*/
*/
*/
*/
*/
*/
*/

The hdc parameter of this function specifies a handle (i.e.,
a numerical identifier) for a device context. In this case, the
device context specifies attributes that determine how the
operating system interacts with the video display 18. The
nXStart parameter specifies the logical X coordinate at
which the string of the tool tip message begins. Similarly, the
nYStart parameter specifies the logical Y coordinate at
which the string begins. The fuOptions parameter specifies
the type of rectangle for the tool tip. The operating system
24 provides predefined data structures that specify rectangle
types. In this case, the rectangle type is defined as a clipped
rectangle. The lprc parameter is a pointer to a structure that
holds a rectangle and the lpszString is a pointer to a structure
that holds the textual string to be displayed in the tool tip.
The cbString parameter specifies the number of bytes in the
string and the lpDx parameter specifies spacing between
character cells.

When the window procedure for the tool bar 34 receives
a mouse message that indicates that the mouse cursor 30 (see

50

55

60

65

provided by the operating system 24 or may be a separate
component that is provided by the application program 26.
The tip is displayed when the timer counts up to a preset
trigger point and the magnitude of the velocity of the mouse
cursor is an acceptable range. The timer trigger point is then
set to 0.7 seconds (step 43 in FIG. 3A). Those skilled in the
art will appreciate that the choice of 0.7 seconds is not
intended to be limiting of the present invention; rather, 0.7
seconds is a value used in the preferred embodiment of the
present invention, which appears to empirically produce
desirable results. The timer is then reset to zero seconds so
that it can begin counting time.

As mentioned above, the magnitude of the velocity of the
mouse cursor 30 is also used to control whether a tool tip is
displayed. FIG. 3B shows the steps that are performed to
determine the magnitude of velocity of the mouse cursor 30.
Initially, a mouse message is received (step 45). As dis-
cussed above, the mouse message includes the (X, Y)
coordinates that specify the most recent position of the

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 110 of 172

US 6,542,164 B2

7

mouse cursor 30. The coordinates are utilized to determine
whether the mouse cursor 30 points to a tool bar control
(step 46). As was discussed above, the system knows the
locations of the tool bar controls within the tool bar 34. This
knowledge is used to determine whether the cursor points to
a tool bar control. Mouse messages are generated periodi-
cally as the mouse cursor position changes. The time interval
between mouse messages is reasonably fixed. Hence, the
magnitude of the velocity of the mouse cursor 30 may be
determined by comparing the (X, Y) coordinates for the
most recently received mouse message with the coordinates
from the last previous mouse message. The Euclidean dis-
tance between these two sets of coordinates may be calcu-
lated and, since the time interval is known, the magnitudes
of velocity can then be calculated. However, since the time
interval is fixed, there is no need to calculate the magnitude
of velocity in each instance; rather, the measure of the
distance traveled quantifies the magnitude of the velocity of
the mouse cursor 30. Accordingly, the preferred embodiment
of the present invention merely measures the distance in
pixels since the last mouse message as the velocity metric
(step 47).

Those skilled in the art will appreciate that in alternative
embodiments, the present invention may use the magnitude
of the velocity as the measure that must exceed a predeter-
mined empirically derived threshold. Alternatively, the vec-
tor value of the velocity may be utilized and compared to a
vector threshold to determine whether a tool tip should be
displayed or not. Moreover, those skilled in the art will
appreciate that mouse cursor velocity may be used alone to
determine whether a tool tip is displaced or, as employed in
the preferred embodiment of the present invention, may be
used in conjunction with time metrics to determine whether
to display a tool tip or not. In addition, it should be realized
that the controls described herein may be applied more
broadly to any events that are triggered by measuring the
time and velocity variables or velocity variable alone of a
mouse cursor within a region of a user interface.

Whenever the mouse cursor 30 is positioned to point to a
control within the tool bar 34 of the application program 26,
the steps shown in FIG. 4 are performed. Initially, the timer
is initiated to run (step 48). When the timer expires (step 50),
a determination is made whether the mouse cursor 30 is still
pointing at the same control on the tool bar 34 (step 51 in
FIG. 4) and whether the measured velocity metric has
remained below an empirically derived threshold value
during the time period (step 52). If both of these conditions
are met, a tool tip is displayed as discussed above (step 54
in FIG. 4). In an alternative embodiment, the velocity metric
is only measured as the timer expires rather than during the
entire time interval. In addition to the tool tip being
displayed, the timer trigger point is set to 0.1 seconds (step
56). The setting of the timer trigger point to a shorter
duration (e.g., 0.1 seconds) facilitates browsing, so that the
tool tips will be more quickly displayed when the user
moves to an adjacent button or other control on the tool bar
34. If either of the conditions is not met, a tool tip is not
displayed and the timer is reset to O seconds (step 53).

The time duration for which the mouse cursor 30 remains
pointing at a tool bar control and the measured magnitude of
the velocity of the mouse cursor provide helpful indicators
of the intent of the user. Empirical tests indicate that users
typically will leave the mouse cursor pointing at a control for
a time period greater than 0.7 seconds if they wish to use the
control. Similarly, users tend to move the mouse cursor
slowly over a tool bar control when they wish to utilize the
tool bar control. In contrast, when users do not wish to use

10

15

20

25

30

35

40

45

50

55

60

65

8

a tool bar control and are merely passing over a tool bar
control, the users move the mouse cursor with a sufficient
magnitude of velocity to indicate their intent.

FIG. 5 is a flow chart illustrating the steps performed
when a mouse cursor is positioned to no longer point at a
tool bar control (step 58). As soon as the cursor no longer
points at the tool bar control, the tool tip is no longer
displayed (step 60).

When the mouse cursor is positioned so as to no longer
point within the tool bar, the steps shown in FIG. 6 are
performed. In particular, when the cursor leaves the tool bar
(step 62), the timer is cleared (step 64). The clearing of the
timer allows the processing to be reinitiated when the cursor
again returns to point to a location within the tool bar.

While the present invention has been described with
reference to a preferred embodiment thereof, those skilled in
the art will appreciate that various changes in form and detail
may be made without departing from the intended scope of
the present invention as defined in the appended claims. For
example, the timing control described above relative to the
preferred embodiment of the present invention may also be
applied to graphical objects other than tools on a tool bar.
Moreover, the timing parameters utilized by the preferred
embodiment of the present invention are intended to merely
illustrative. Other timing parameters may be utilized as well.
Still further, pointing devices other than the mouse may be
used to position the cursor.

What is claimed is:

1. A method of displaying information about a graphical
object displayed on a video display, the method comprising:

determining that a cursor is positioned to point at the

graphical object on the video display;

setting a first trigger point representing a predetermined

period of time, the predetermined period of time being
greater than an interval between two consecutive
mouse location events;

determining expiration of the predetermined period of

time represented by the first trigger point responsive to
the operation of determining that the cursor is posi-
tioned to point at the graphical object; and

displaying the information adjacent to the graphical object

on the video display, responsive to the operation of
determining expiration of the predetermined period of
time.

2. The method of claim 1 wherein the operation of
determining that a cursor is positioned to point at the
graphical object comprises:

receiving a message notification indicating that the cursor

is positioned to point at the graphical object on the
video display.

3. The method of claim 1 wherein the operation of setting
the first trigger point comprises:

initiating a timer to count for the predetermined period of

time represented by the first trigger point.

4. The method of claim 3 wherein the operation of
determining expiration of the predetermined period of time
comprises:

determining that the timer has counted for the predeter-

mined period of time.

5. The method of claim 4 further comprising:

clearing the timer if the cursor is no longer positioned to

point at the graphical object before the timer expires.

6. The method of claim 4 further comprising:

clearing the timer if the cursor is moved before the timer

expires.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 111 of 172

US 6,542,164 B2

9

7. The method of claim 1 wherein the displaying opera-
tion comprises;
determining a position of the cursor after the predeter-
mined period of time expires;
determining whether the position of the cursor is over the
graphical object on the video display, responsive to the
operation of determining the position of the cursor, and
displaying on the video display the information about the
graphical object at a predefined location relative to the
graphical object.
8. The method of claim 1 further comprising:
terminating display of the information if the cursor no
longer points at the graphical object on the video
display, after the displaying operation.
9. The method of claim 1 further comprising:
determining movement of the cursor to point at a different
graphical object displayed on the video display;
setting a second trigger point representing a shorter period
of time than the predetermined period of time, respon-
sive to the operation of displaying the information
adjacent to the different graphical object on the video
display;
detecting expiration of the shorter period of time repre-
senting the second trigger point, responsive to the
operation of determining movement of the cursor to
point at the different graphical object; and
displaying the information adjacent to the different
graphical object on the video display, responsive to the
operation of detecting expiration of the shorter period
of time.
10. The method of claim 1 further comprising:
determining the information to be displayed about the
graphical object, responsive to the operation of deter-
mining expiration of the predetermined period of time.
11. A method of displaying information about a control
displayed on a video display, the method comprising:
determining that a cursor is positioned to point at the
control on the video display;
waiting a predetermined period of time, the predeter-
mined period of time being greater than an interval
between two consecutive mouse location events;
receiving notification that the predetermined period of
time has expired; and
displaying the information adjacent to the control on the
video display, if the cursor is still positioned to point at
the control after expiration of the predetermined period
of time.
12. The method of claim 11 wherein the operation of
displaying the information comprises:
displaying text about the control adjacent to the control on
the video display.
13. The method of claim 11 wherein the control includes
a button control.
14. The method of claim 11 wherein the control includes
a list box control.
15. The method of claim 11 wherein the operation of
displaying the information comprises:
determining a velocity of the cursor over the control; and
displaying the information adjacent to the control on the
video display, if the cursor is still positioned to point at
the control after expiration of the predetermined period
of time and the velocity remains below a predetermined
threshold.
16. A computer program storage medium readable by a
computer system and encoding a computer program for

20

25

30

35

40

45

50

60

65

10

executing a computer process for displaying information
about a graphical object displayed on a video display, the
computer process comprising:

determining that a cursor is positioned to point at the

graphical object on the video display;

setting a first trigger point representing a predetermined

period of time, the predetermined period of time being
greater than an interval between two consecutive
mouse location events;

determining expiration of the predetermined period of

time represented by the first trigger point, responsive to
the operation of determining that the cursor is posi-
tioned to point at the graphical object; and

displaying the information adjacent to the graphical object

on the video display, responsive to the operation of
determining expiration of the predetermined period of
time.

17. The computer program storage medium of claim 16
wherein the operation of determining that a cursor is posi-
tioned to point at the graphical object comprises:

receiving a message notification indicating that the cursor

is positioned to point at the graphical object on the
video display.

18. The computer program storage medium of claim 16
wherein the operation of setting the first trigger point
comprises:

initiating a timer to count for the predetermined period of

time represented by the first trigger point.

19. The computer program storage medium of claim 18
wherein the operation of determining expiration of the
predetermined period of time comprises:

determining that the timer has counted for the predeter-

mined period of time.

20. The computer program storage medium of claim 19
wherein the computer process further comprises:

clearing the timer if the cursor is no longer positioned to

point at the graphical object before the timer expires.

21. The computer program storage medium of claim 19
wherein the computer process further comprises:

clearing the timer if the cursor is moved before the timer

expires.

22. The computer program storage medium of claim 16
wherein the displaying operation comprises;

determining a position of the cursor after the predeter-

mined period of time expires;
determining whether the position of the cursor is over the
graphical object on the video display, responsive to the
operation of determining the position of the cursor; and

displaying on the video display the information about the
graphical object at a predefined location relative to the
graphical object.

23. The computer program storage medium of claim 16
wherein the computer process further comprises:

terminating display of the information if the cursor no

longer points at the graphical object on the video
display, after the displaying operation.
24. The computer program storage medium of claim 16
wherein the computer process further comprises:
determining movement of the cursor to point at a different
graphical object displayed on the video display;

setting a second trigger point representing a shorter period
of time than the predetermined period of time, respon-
sive to the operation of displaying the information
adjacent to the different graphical object on the video
display;

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 112 of 172

US 6,542,164 B2

11

determining expiration of the shorter period of time
representing the second trigger point, responsive to the
operation of determining movement of the cursor to
point at the different graphical object; and

displaying the information adjacent to the different
graphical object on the video display, responsive to the
operation of determining expiration of the shorter
period of time.
25. The computer program storage medium of claim 16
wherein the computer process further comprises:
determining the information to be displayed about the
graphical object, responsive to the operation of detect-
ing expiration of the predetermined period of time.
26. A computer program storage medium readable by a
computer system and encoding a computer program for
executing a computer process for displaying information
about a graphical object displayed on a video display, the
computer process comprising:
detecting a cursor positioned to point at the control on the
video display;
waiting a predetermined period of time, the predeter-
mined period of time being greater than an interval
between two consecutive mouse location events;
receiving notification that the predetermined period of
time has expired; and

5

10

15

20

25

12

displaying the information adjacent to the control on the
video display, if the cursor is still positioned to point at
the control after expiration of the predetermined period
of time.

27. The computer program storage medium of claim 26
wherein the operation of displaying the information com-
prises:

displaying text about the control adjacent to the control on

the video display.

28. The computer program storage medium of claim 26
wherein the control includes a button control.

29. The computer program storage medium of claim 26
wherein the control includes a list box control.

30. The computer program storage medium of claim 26
wherein the operation of displaying the information com-
prises:

detecting a velocity of the cursor over the control; and

displaying the information adjacent to the control on the
video display, if the cursor is still positioned to point at
the control after expiration of the predetermined period
of time and the velocity remains below a predetermined
threshold.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 113 of 172

Exhibit G

o e D R SEAASO AT AN 0

a2 United States Patent

Graham

US006281879B1

(10) Patent No.:
5) Date of Patent:

US 6,281,879 Bl

Aug. 28, 2001

(54

(75)

(73)

*)

@D
(22

(63)

D
(52)
(58)

(56)

TIMING AND VELOCITY CONTROL FOR 5,287,448 * 2/1994 Nicol et al. .
DISPLAYING GRAPHICAL INFORMATION 5,299,307 * 3/1994 YOUNZ .coeovrrermnermnerecerecerevernen 345/157
5,373,309 * 12/1994 Totsuka et al.ccoevveereennene 345/145
Inventor: Christopher E. Graham, Redmond, 5,546,521 * 8/1996 Martinez .
WA (US) OTHER PUBLICATIONS
Assignee: Microsoft Corporation, Redmond, WA Macintosh Reference, Apple Computer Inc, pp. 30-31,
(US) 1991.*
Quick Result, Microsoft Word, Version 6.0, 1993, pp 39-40
Notice: Subject to any disclaimer, the term of this and 154-155.*
patent is extended or adjusted under 35 . o .
U.S.C. 154(b) by 0 days. cited by examiner
Primary Examiner—Chanh Nguyen
Appl. No.: 08/873,855 (74) Attorney, Agent, or Firm—Merchant & Gould, P.C.
Filed: Jun. 12, 1997 57 ABSTRACT
Related U.S. Application Data Time and velocity metrics are used to control when infor-
mation about a graphical object to which a cursor points is
Continuation of application No. 08/709,529, filed on Sep. 6, displayed on a video display. The time metric is used to
1996, now abandoned, which is a continuation of application ~ ensure that a non-negligible amount of time passes between
No. 08/260,558, filed on Jun. 16, 1994, now abandoned. the time at which the cursor initially points to the graphical
TNt CL7 o G09G 5/08 object and the time at which the information about the
U.S. Cle oo 345/157; 345/150 Sraphical object is displayed on the video display. The time
Field of Search 345 /’1 57 159 Qelay helps to eliminate such 1pf0rmat10n being displayed
345 /145146119120 123 3 48, 3 49f made.:rtentl}./ th%n the user qu.1ck1y passes .tt.le cursor over
i i 3 9’5 5 5’ 15 6’ 1 57’ 15 9’ graphical objects in the video display. In addition, the timing
i i i control facilitates the shortening of the delay when it appears
References Cited that the user wishes to browse amongst several related
graphical objects that are shown in the video display. For
U.S. PATENT DOCUMENTS example, when it appears that the user wishes to browse
tools on the tool bar, the delay is shortened. The velocity
j’ggi’?gg %ﬁggﬁ E/Elrlrl};ret Al e ;23;388 metric is used to determine the likelihood that the user
5140678 * 81992 Torres . intended to point to the graphical object and serves to
5155806 10/1992 Hoeber et al. ...oo...oooer.. 39s/157 ~ minimize instances where undesired information about the
5,157,768 1071992 Hoeber et al. 395/157 graphical object is displayed.
5,169,342 12/1992 Steele et al. 434/112
5,196,838 3/1993 Meier et al. .c.coeveerieiiinnnne 340/724 9 Claims, 7 Drawing Sheets

Initiate timer to Run ™~ 48
Timer expires s~ 50

Is cursor
still pointing at
control?

Has
velocity metric
remained below

53
5 Display tool tip b~ 54
Resettimerto 0
seconds 1
Set timer trigger point | ~56
to 0.1 seconds

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 115 of 172

U.S. Patent Aug. 28, 2001 Sheet 1 of 7 US 6,281,879 B1

L~ 14
L~

Mouse
Video
Display

U~ 12
S~ 22

E«m | o
> L) .
o S S o
O o8 y,
b % Ty
© o < ©
~— N N N
c
e by gE.Q
S o £ o|l®
el £ = .0
> [L >NF
) = 2L0nla
> O P

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 116 of 172

U.S. Patent Aug. 28, 2001 Sheet 2 of 7 US 6,281,879 B1

32

Eife EQf View lnsert Format Tools Table Window Help

TR

FIG, 2A

Flle Fdit View Insert Format fools lable Window help

34

40 a8 FIG, 28

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 117 of 172

U.S. Patent Aug. 28, 2001 Sheet 3 of 7

US 6,281,879 Bl

(sean)

|

Determine that
cursor points to a
toolbar control

S~ 42

l

Set timer trigger
point to 0.7
seconds

S~ 43

|

Set timerto O
seconds

~J~ 44

l

(Return >

FIG. 3A

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 118 of 172

U.S. Patent Aug. 28, 2001 Sheet 4 of 7 US 6,281,879 B1

e

l

Receive mouse

S~ 45
message
Determine from
(x,y) coordinates |~ 46

that cursor points
to a toolbar control

l

Measure distance
since last mouse (o~ 47
message

C Return)

FIG. 3B

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 119 of 172

U.S. Patent

No

Aug. 28, 2001

Sheet 5 of 7

Begin

C

US 6,281,879 Bl

)

Initiate timer to Run

L~ 48

Timer expires

L~ 50

Is cursor

Yes

still pointing at
control?

Has
velocity metric

3
Reset timer to 0
seconds

remained below
hreshold?

51

52

Display tool tip

~J~ 54

Set timer trigger point

S 56

Return

to 0.1 seconds

FIG. 4

)

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 120 of 172

U.S. Patent Aug. 28, 2001 Sheet 6 of 7 US 6,281,879 B1

C -~)

Cursor is
positioned to no

: S~ 58
longer point at
toolbar control
No longer display |~ 80

tool tip

]
(Rewm)

FIG. 5

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 121 of 172

U.S. Patent Aug. 28, 2001 Sheet 7 of 7 US 6,281,879 Bl

(=0

Cursor leaves
toolbar

|

Clear timer ~J "~ 64

l
(Reum)

™~ 62

FIG. 6

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 122 of 172

US 6,281,879 B1

1

TIMING AND VELOCITY CONTROL FOR
DISPLAYING GRAPHICAL INFORMATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 08/709,529, filed Sep. 6, 1996, now abandoned,
which is a File Wrapper Continuation of U.S. patent appli-
cation Ser. No. 08/260,558, filed Jun. 16, 1994, now aban-
doned.

TECHNICAL FIELD

The present invention relates generally to data processing
systems and, more particularly, to the displaying of graphi-
cal information in data processing systems.

BACKGROUND OF THE INVENTION

Many conventional application programs utilize tool bars.
Tool bars provide the user with a number of tools that assist
the user in performing tasks.

Typically, a separate control is provided for each tool on
the tool bar. The control may be a pushbutton or another
graphical object that allows the user to invoke the desired
tool. Often times the controls on the tool bar have icons on
their faces that indicate the nature of the tool. Unfortunately,
as the typical number of controls on the tool bar has grown
for applications, it has become more and more difficult for
the user to discern the nature of the tool solely from the icons
shown as part of the tool bar. As such, many users have
difficulty using the tools on the tool bar.

SUMMARY OF THE INVENTION

The limitations of the prior art are overcome by the
present invention. In accordance with a first aspect of the
present invention, a method is practiced in a data processing
system having a video display for displaying a cursor that
points to positions on the video display. The data processing
system also includes an input device for manipulating the
cursor. In accordance with this method, it is first determined
that the cursor points to a position within a region on the
video display. A velocity metric of the cursor is measured.
Where the velocity metric does not exceed a predetermined
threshold value, an event is triggered. On the other hand,
where the velocity metric exceeds the predetermined thresh-
old value, the event is inhibited.

In accordance with a second aspect of the present
invention, it is determined that a cursor points to a position
within a region on the video display. A time period metric
that specifies how long the cursor has remained pointing
within the region is measured. A velocity metric of the
cursor within the region is also measured. Based upon these
metrics, a determination is made whether to trigger an event.

In accordance with an additional aspect of the present
invention, a method is practiced in a data processing system
having a video display for displaying a cursor that points to
positions in the video display and an input device for
manipulating the cursor. In accordance with this method, a
graphical object is displayed on the video display. The user
uses the input device, and in response, the data processing
system positions the cursor to point at the graphical object.
A predetermined period of time, such as a time greater than
0.4 seconds, is allowed to pass and then a determination is
made whether the cursor still points at the graphical object.
If it is determined that the cursor still points at the graphical
object, information about the graphical object is displayed
adjacent to the graphical object on the video display.

10

15

20

25

30

35

40

45

50

55

60

65

2

In accordance with another aspect of the present
invention, a method is practiced wherein a tool bar having
tools is displayed on the video display. When the user uses
the input device, the cursor is position to point at a selected
one of the tools on the tool bar. The system waits a
predetermined non-negligible amount of time. The system
also measures a velocity metric of the cursor within the first
graphical object. If the cursor still points at the selected tool
after waiting the predetermined non-negligible amount of
time and the velocity metric has remained below a prede-
termined threshold during the predetermined non-negligible
amount of time, information about the selected tool is
displayed in the video display. The position is adjacent to the
selected tool.

In accordance with a further aspect of the present
invention, a method is practiced in a computer system
having a video display for displaying a cursor that points to
positions on the video display and an input device for
moving the cursor on the video display. In this method, a
first graphical object is displayed on the video display. In
response to the user using the input device, the cursor is
positioned to point at the first graphical object. The system
waits a non-negligible predetermined amount of time. A
determination is made whether the cursor still points at the
graphical object after the non-negligible predetermined
amount of time has passed. Where the cursor still points at
the first graphical object, a number of steps are performed.
These steps include displaying information about the first
graphical object adjacent to the first graphical object of the
video display. The non-negligible predetermined amount of
time is then reset to a substantially shorter amount of time.
A second graphical object is displayed on the video display
and, in response to the user using the input device, the cursor
is positioned to point at the second graphical object on the
video display. The system waits the substantially shorter
amount of time. Where the cursor is still pointing at the
second graphical object after waiting the substantially
shorter period of time, information about the second graphi-
cal object is displayed adjacent to the second graphical
object on the video display.

In accordance with a still further aspect of the present
invention, a data processing system includes a video display
for displaying video data. The video display displays a first
graphical object and a cursor that points to the first graphical
object. An input device is included in this part of the data
processing system for moving the cursor on the video
display. A message generator is provided for displaying
information about the first graphical object. The information
is displayed adjacent to the first graphical object on the video
display when the cursor remains pointing at the first graphi-
cal object for a predetermined non-negligible amount of
time. The message generator includes a comparator and a
message source. The comparator determines whether the
cursors remain pointing at the first graphical object for the
predetermined non-negligible amount of time. The message
source provides and displays information about the first
graphical object adjacent to the first graphical object on the
video display when the comparator determines that the
cursor has remained pointing at the first graphical object for
the specified amount of time.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a data processing system that
is suitable for practicing a preferred embodiment of the
present invention.

FIG. 2A is a diagram illustrating a tool bar and a tool tip
that is provided for a print button in accordance with the
preferred embodiment of the present invention.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 123 of 172

US 6,281,879 B1

3

FIG. 2B is a diagram illustrating a tool bar and a tool tip
that is provided for a font list box in accordance with the
preferred embodiment of the present invention.

FIG. 3Ais a flow chart illustrating the steps performed to
initially set a timer when a cursor is positioned over a control
on the tool bar in accordance with the preferred embodiment
of the present invention.

FIG. 3B is a flow chart illustrating the steps performed to
determine the magnitude of the velocity of the cursor when
the cursor is positioned over a control on the tool bar in
accordance with the preferred embodiment of the present
invention.

FIG. 4 is a flow chart illustrating the steps performed to
determine whether a tool tip is to be displayed in the
preferred embodiment of the present invention.

FIG. 5 is a flow chart illustrating the steps performed
when a cursor no longer points within the tool bar in the
preferred embodiment of the present invention.

FIG. 6 is a flow chart illustrating the steps that are
performed relative to the timer when the cursor leaves the
tool bar in the preferred embodiment of the present inven-
tion.

DETAILED DESCRIPTION OF THE
INVENTION

The preferred embodiment of the present invention dis-
plays a tool tip when a mouse cursor points to a tool or a tool
bar for a sufficient amount of time and the magnitude of the
velocity of the mouse cursor remains below a predetermined
threshold. A tool tip is a brief textual message, such as a
name of a tool, that identifies the nature of the tool. The
preferred embodiment of the present invention provides a
delay between when the mouse cursor is initially positioned
to point at the tool control on the tool bar and when the tool
tip is displayed. This delay prevents the user from receiving
undesired tool tips when the user inadvertently passes the
mouse cursor over a control on the tool bar. The delay is
sufficiently long (i.e., it is non-negligible) to allow the user
to move the mouse cursor if he does not want to receive a
tool tip. The delay is shortened when an initial tool tip is
displayed so as to allow the user to quickly browse the tool
controls that are available on the tool bar. The magnitude of
the velocity of the mouse cursor is measured to determine
whether the user likely intends to point at the tool to receive
a tool tip or whether the user, instead, is merely passing over
the tool while moving to another destination.

Although the preferred embodiment of the present inven-
tion concerns controlling when tool tips for tools on a tool
bar are displayed, those skilled in the art will appreciate that
the present invention may generally be applied to other
regions of a video display (such as other types of graphical
objects) for which graphical information is to be provided.
It should be appreciated that the present invention may be
applied to both visible and invisible graphical objects.

FIG. 1 is a block diagram of a data processing system 10
that is suitable for practicing the preferred embodiment of
the present invention. The data processing system 10
includes at least one central processing unit (CPU) 12. The
CPU 12 is connected to a number of peripheral devices,
including a mouse 14, a keyboard 16 and a video display 18.
The CPU 12 is also connected to a memory 20 and a
secondary storage device 22, such as a hard disk drive. The
memory 20 holds a copy of an operating system 24, such as
the Microsoft Windows, version 3.1, operating system sold
by Microsoft Corporation of Redmond, Wash. The memory
20 also holds a copy of an application program 26. The

10

15

20

25

30

35

40

45

50

55

60

65

4

implementation of the preferred embodiment of the present
invention will be described below with reference to use of
tool tips within the application program 26. Nevertheless, it
should be appreciated that the tool tips may alternatively be
implemented in the operating system 24 or as a system
resource.

FIG. 2A shows the tool bar 34 that is generated and
displayed on the video display 18 when the application
program 26 is run on the CPU 12. The tool bar 34 includes
a number of controls, such as buttons and list boxes, that
enable a user to access the tools of the tool bar. When the
user positions a mouse cursor 30 over one of the buttons and
clicks the mouse (i.e., quickly depresses and releases a
predefined one of the mouse buttons), the tool associated
with the button is invoked. Similarly, by positioning the
mouse cursor 30 over one of the buttons of the list boxes, a
drop-down list appears, and the user may select one of the
options on the drop-down list using the mouse 14.

The tool bar 34 is created as a window by the application
program 26. The operating system 24 facilitates the defini-
tion of such windows (as is provided in the Microsoft
Windows, version 3.1, operating system). FIG. 2A shows the
mouse cursor 30 pointing to a print button 32 on the tool bar
34. When a user positions the mouse cursor 30 over the print
button 32 and clicks the mouse button, the document cur-
rently displayed in the window of the application program is
printed.

The user interface provided for the application program
24 is logically divisible into a number of windows. One of
these windows is the tool bar 34. In general, each window
of the user interface has a separate window procedure
associated with it. The operating system 24 maintains a
message queue for each program that generates windows.
Accordingly, the application program 26 has its own mes-
sage queue. Since the application program 26 may generate
multiple windows, the message queue may hold messages
for multiple windows. When an event occurs, the event is
translated into a message that is put into the message queue
for the application program 26. The application program 26
retrieves and delivers the message to the proper windows by
executing a block code known as the “message loop.” The
window procedure that receives the message then processes
the message.

Movements of the mouse 14 are reflected in messages that
are placed into the message queue of the application pro-
gram 26. In particular, when a user positions the mouse
cursor 30 with the mouse 14 over a window or clicks the
mouse by depressing one of the mouse buttons within a
window, the procedure for the window receives a mouse
message. The operating system 24 provides a number of
predefined mouse messages. The mouse messages specify
the status of mouse buttons and the position of the mouse
cursor 30 within the window. The position of the mouse
cursor 30 within the window is specified in (X, Y) coordi-
nates relative to the upper left-hand corner of the window.
Thus, when the mouse cursor 30 moves within the tool bar
34, the position of the mouse cursor 30 within the tool bar
is reflected and a mouse message that specifies (X, Y)
coordinates of the mouse cursor relative to the upper left-
hand corner of the tool bar. The window procedure receives
the mouse message and utilizes the information contained in
the message to respond to the mouse 14 activities.

As mentioned above, the application program 26 specifies
the window that constitutes the tool bar 34. The application
program 26 paints each of the controls, including print
button 32, at known locations within the window of the tool

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 124 of 172

US 6,281,879 B1

5

bar 34. When the mouse cursor 30 is positioned within the
tool bar, mouse messages specify the position of the mouse
cursor within the tool bar 34. The mouse messages are sent
to the window procedure that is responsible for the tool bar
window. The window procedure for the tool bar 34 com-
pares the coordinates specified by the mouse message with
the known location of the controls within the tool bar.
Accordingly, the window procedure for the tool bar 34 can
determine whether the mouse cursor 30 is pointing at any of
the controls. When it is determined that the mouse cursor 30
is pointing at one of the controls of the tool bar 34, a tool tip
28 may be displayed if the mouse cursor 30 has remained
pointing at the control for a sufficient period of time and the
magnitude of the velocity of the mouse cursor is below a
predetermined threshold. Hence, in the example shown in
FIG. 2A, the message “Print” is displayed as a tool tip 28,
given that the mouse cursor 30 is pointing to the print button
32.

Tool tips are provided not only for buttons on the tool bar
34 but are also provided for other types of controls. For
example, as shown in FIG. 2B, a mouse cursor 38 points to
a portion of a list box 40 that concerns the font which the
user wishes to utilize. Accordingly, a tool tip 36 is displayed
that includes the text “Font”. It is worth noting that the
mouse cursor 38 changes from an arrow to a cross bar, since
the cursor points to a portion of a list box that contains text
rather than a button as in FIG. 2A.

Tool tips are displayed using text output commands that
are provided by the operating system 24. Specifically, the
ExtTextOut () function that is provided by the Microsoft
Windows, version 3.1, operating system is used in the
preferred embodiment. The format of this on is as follows:

BOOL ExtTextOut(hde, nXStart, nYStart, fuOptions,
Ipre, lpszString, cbString, 1pDx)

HDC hdc; /* handle of device context *f
int nXStart; /* x-coordinate of starting position *f
int nYStart; /* y-coordinate of starting position */
UINT fuOptions; /* rectangle type */
const RECT FAR* Iprc; /* address of structure with rectangle *f
LPCSTR lpszString; /* address of string */
UINT cbString; /* number of bytes in string */
int FAR* IpDx; /* spacing between character cells */

The hdc parameter of this function specifies a handle (i.e.,
a numerical identifier) for a device context. In this case, the
device context specifies attributes that determine how the
operating system interacts with the video display 18. The
nXStart parameter specifies the logical X coordinate at
which the string of the tool tip message begins. Similarly, the
nYStart parameter specifies the logical Y coordinate at
which the string begins. The fuOptions parameter specifies
the type of rectangle for the tool tip. The operating system
24 provides predefined data structures that specify rectangle
types. In this case, the rectangle type is defined as a clipped
rectangle. The lprc parameter is a pointer to a structure that
holds a rectangle and the lpszstring is a pointer to a structure
that holds the textual string to be displayed in the tool tip.
The cbstring parameter specifies the number of bytes in the
string and the lpDx parameter specifies spacing between
character cells.

When the window procedure for the tool bar 34 receives
a mouse message that indicates that the mouse cursor 30 (see
FIG. 2A) is positioned over one of the controls of the tool
bar 34, a sufficient time has elapsed and the measured
magnitude of the velocity of the mouse cursor 30 is below

10

15

20

25

30

35

40

45

50

55

60

65

6

a predetermined threshold, the procedure determines the
string that is to be displayed in the tool tip for the control to
which the mouse cursor points. The address of this string is
passed as the lpszstring parameter to the ExtTextOut ()
function. This function then proceeds to draw the tool tip.

As the rectangle for the tool tip is a clipped rectangle, the
background color may be specified. In the preferred embodi-
ment of the present invention, the background color is
yellow, as specified in red/green/blue (RGB) coordinates as
(255, 255, 128). The size of the rectangle used for the tool
tip is as follows: height equals the height of the text as
specified by the font (i.e., the point of the font) plus 4, and
length equals length of the text plus 4.

The tool tips are displayed at predefined locations relative
to the controls. In general, tool tips are displayed centered
under edit boxes and combo boxes and displayed relative to
tool bar buttons at a position where the upper left-hand
corner of the tool tip rectangle is 2 pixels to the left of the
top left corner of the button and 15 pixels below the hot spot
of the mouse 14. Those skilled in the art will appreciate that
tool tips may be displayed at other locations that are adjacent
to the tools.

The discussion will now focus on the controls for deter-
mining when to display the tool tip. When the mouse cursor
30 is initially positioned to point to a tool bar control (i.e.,
the first time that the mouse cursor points to a control while
it has been in the tool bar 34), the steps shown in FIG. 3A
are performed. Initially, the window procedure for the tool
bar 34 determines that the mouse cursor 30 points to a tool
bar control (step 42 in FIG. 3A). The application program 26
uses a timer to determine whether or not to display a tool tip.
This timer may be a system-provided resource that is
provided by the operating system 24 or may be a separate
component that is provided by the application program 26.
The tip is displayed when the timer counts up to a preset
trigger point and the magnitude of the velocity of the mouse
cursor is an acceptable range. The timer trigger point is then
set to 0.7 seconds (step 43 in FIG. 3A). Those skilled in the
art will appreciate that the choice of 0.7 seconds is not
intended to be limiting of the present invention; rather, 0.7
seconds is a value used in the preferred embodiment of the
present invention, which appears to empirically produce
desirable results The timer is then reset to zero seconds so
that it can begin counting time.

As mentioned above, the magnitude of the velocity of the
mouse cursor 30 is also used to control whether a tool tip is
displayed. FIG. 3B shows the steps that are performed to
determine the magnitude of velocity of the mouse cursor 30.
Initially, a mouse message is received (step 45). As dis-
cussed above, the mouse message includes the (X, Y)
coordinates that specify the most recent position of the
mouse cursor 30. The coordinates are utilized to determine
whether the mouse cursor 30 points to a tool bar control
(step 46). As was discussed above, the system knows the
locations of the tool bar controls within the tool bar 34. This
knowledge is used to determine whether the cursor points to
a tool bar control. Mouse messages are generated periodi-
cally as the mouse cursor position changes. The time interval
between mouse messages is reasonably fixed. Hence, the
magnitude of the velocity of the mouse cursor 30 may be
determined by comparing the (X, Y) coordinates for the
most recently received mouse message with the coordinates
from the last previous mouse message. The Euclidean dis-
tance between these two sets of coordinates may be calcu-
lated and, since the time interval is known, the magnitudes
of velocity can then be calculated. However, since the time
interval is fixed, there is no need to calculate the magnitude

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 125 of 172

US 6,281,879 B1

7

of velocity in each instance; rather, the measure of the
distance traveled quantifies the magnitude of the velocity of
the mouse cursor 30. Accordingly, the preferred embodiment
of the present invention merely measures the distance in
pixels since the last mouse message as the velocity metric
(step 47).

Those skilled in the art will appreciate that in alternative
embodiments, the present invention may use the magnitude
of the velocity as the measure that must exceed a predeter-
mined empirically derived threshold. Alternatively, the vec-
tor value of the velocity may be utilized and compared to a
vector threshold to determine whether a tool tip should be
displayed or not. Moreover, those skilled in the art will
appreciate that mouse cursor velocity may be used alone to
determine whether a tool tip is displayed or, as employed in
the preferred embodiment of the present invention, may be
used in conjunction with time metrics to determine whether
to display a tool tip or not. In addition, it should be realized
that the controls described herein may be applied more
broadly to any events that are triggered by measuring the
time and velocity variables or velocity variable alone of a
mouse cursor within a region of a user interface.

Whenever the mouse cursor 30 is positioned to point to a
control within the tool bar 34 of the application program 26,
the steps shown in FIG. 4 are performed. Initially, the timer
is initiated to run (step 48). When the timer expires (step 50),
a determination is made whether the mouse cursor 30 is still
pointing at the same control on the tool bar 34 (step 51 in
FIG. 4) and whether the measured velocity metric has
remained below an empirically derived threshold value
during the time period (step 52). If both of these conditions
are met, a tool tip is displayed as discussed above (step 54
in FIG. 4). In an alternative embodiment, the velocity metric
is only measured as the timer expires rather than during the
entire time interval. In addition to the tool tip being
displayed, the timer trigger point is set to 0.1 seconds (step
56). The setting of the timer trigger point to a shorter
duration (e.g., 0.1 seconds) facilitates browsing, so that the
tool tips will be more quickly displayed when the user
moves to an adjacent button or other control on the tool bar
34. If either of the conditions is not met, a tool tip is not
displayed and the timer is reset to O seconds (step 53).

The time duration for which the mouse cursor 30 remains
pointing at a tool bar control and the measured magnitude of
the velocity of the mouse cursor provide helpful indicators
of the intent of the user. Empirical tests indicate that users
typically will leave the mouse cursor pointing at a control for
a time period greater than 0.7 seconds if they wish to use the
control. Similarly, users tend to move the mouse cursor
slowly over a tool bar control when they wish to utilize the
tool bar control. In contrast, when users do not wish to use
a tool bar control and are merely passing over a tool bar
control, the users move the mouse cursor with a sufficient
magnitude of velocity to indicate their intent.

FIG. 5 is a flow chart illustrating the steps performed
when a mouse cursor is positioned to no longer point at a
tool bar control (step 58). As soon as the cursor no longer
points at the tool bar control, the tool tip is no longer
displayed (step 60).

When the mouse cursor is positioned so as to no longer
point within the tool bar, the steps shown in FIG. 6 are
performed. In particular, when the cursor leaves the tool bar
(step 62), the timer is cleared (step 64). The clearing of the
timer allows the processing to be reinitiated when the cursor
again returns to point to a location within the tool bar.

While the present invention has been described with
reference to a preferred embodiment thereof, those skilled in

10

15

20

25

30

35

40

45

50

55

60

65

8

the art will appreciate that various changes in form and detail
may be made without departing from the intended scope of
the present invention as defined in the appended claims. For
example, the timing control described above relative to the
preferred embodiment of the present invention may also be
applied to graphical objects other than tools on a tool bar.
Moreover, the timing parameters utilized by the preferred
embodiment of the present invention are intended to merely
illustrative. Other timing parameters may be utilized as well.
Still further, pointing devices other than the mouse may be
used to position the cursor.

What is claimed is:

1. In a data processing system having a video display for
displaying a cursor that points at positions on the video
display and an input device for manipulating the cursor, a
method comprising the steps of:

displaying a tool bar having tools on the video display;

in response to the user using the input device, positioning
the cursor to point at a selected one of the tools on the
tool bar;

waiting a predetermined non-negligible amount of time;

measuring a velocity metric of the cursor within the
selected tool during the predetermined non-negligible
amount of time; and

if the cursor still points at the selected tool and the
velocity metric remains below a predetermined thresh-
old during the predetermined non-negligible amount of
time, displaying information about the selected tool on
the video display adjacent to the selected tool;

changing the predetermined non-negligible amount of
time to a new period of time;

in response to the user using the input device, positioning
the cursor to point to a second of the tools on the tool
bar;

waiting the new period of time;

measuring a velocity metric of the cursor within the
second of the tools during the new period of time; and

when the cursor still points at the second of the tools on
the tool bar and the velocity metric within the second
of the tools has remained below the predetermined
threshold during the new period of time, displaying
information about the second tool on the video display
adjacent to the selected tool.

2. The method of claim 1 wherein displaying information
about the selected tool on the video display comprises the
step of displaying text about the selected tool on the video
display adjacent to the selected tool.

3. The method of claim wherein each of the tools has a
name and the text comprises the name of the selected tool.

4. The method of claim 1 wherein the predetermined
non-negligible amount of time is at least 0.4 seconds.

5. The method of claim 1 wherein the new period of time
is substantially less than the predetermined non-negligible
amount of time.

6. In a computer system having a video display for
displaying a cursor that points to positions on the video
display and an input device for moving the cursor on the
video display, a method comprising the steps of:

displaying a first graphical object on the video display;

in response to the user using the input device, positioning
the cursor to point at the first graphical object;
waiting a non-negligible predetermined amount of time;

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 126 of 172

US 6,281,879 B1

9

determining whether the cursor still points at the first
graphical object after the non-negligible predetermined
amount of time; and

where the cursor still points at the first graphical object

after the non-negligible predetermined amount of time, 5

displaying information about the first graphical object
adjacent to the first graphical object on the video
display;

resetting the non-negligible predetermined amount of
time to a substantially shorter amount of time;

in response to the user using the input device, posi-
tioning the cursor to point at a second graphical
object on the video display;

waiting the substantially shorter amount of time; and

10

where the cursor is still pointing at the second graphical
object after the substantially shorter amount of time,
displaying information about the second graphical
object adjacent to the second graphical object on the

video display.
7. The method of claim 6 wherein the first graphical object

is a tool on a tool bar.

8. The method of claim 6 wherein the second graphical

10 object is a tool on a tool bar.

9. The method of claim 6 wherein the non-negligible
predetermined amount of time is at least 0.4 seconds.

#* #* #* #* #*

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 127 of 172

Exhibit H

o e W PG ARA AR A

US005845077A
United States Patent [(11] Patent Number: 5,845,077
Fawcett 451 Date of Patent: *Dec. 1, 1998
[54] METHOD AND SYSTEM FOR IDENTIFYING 5,495,411 2/1996 Anandacececvenennnne 395/232
AND OBTAINING COMPUTER SOFTWARE 5,528,490 6/1996 Hill .
FROM A REMOTE COMPUTER 5,548,645 8/1996 Anandac..ecceoveevieieieniienienne 380/4
5,586,304 12/1996 Stupeck, Jr. et al. .
. a0 5,586,322 12/1996 Beck et al. ..coccvevvereneecencnnennne 707/200
[75] Inventor: Philip E. Fawcett, Duvall, Wash. 5654901 8/1997 Boman .
[73] Assignee: Microsoft Corporation, Redmond, OTHER PUBLICATIONS
Wash.
Mori et al., “Superdistribution: The Concept and the Archi-
[*] Notice: This patent issued on a continued pros- tecture”, The Transaction of the Ieice, vol. E73, No. 7, pp.
ecution application filed under 37 CFR 11.33._1146 (Jul. 1990).
1.53(d), and is subject to the twenty year Williams, “Internet Component Download,” Microsoft
patent term provisions of 35 U.S.C. Interactive Development, 49-52, Summer, 1996.
154(a)(2). Rozenbilt, “O,A & M Capabilities for Switching Software
Management” IEEE Global Telecommunications Confer-
[21] Appl. No.: 562,929 ence, 1993, pp. 357-361.
_— Primary Examiner—Tod R. Swann
[22] Filed: Nov. 27, 1995 Assistant Examiner—¥red F. Tzeng
[51] TNt CLO oo GOGF 7/00 Attorney, Agent, or Firm—Klarquist Sparkman Campbell
[52] US.CL ... 395/200.51; 364/221; 364/221.7, ~ Leigh & Whinston, LLP
364/222.81; 364/259; 395/712; 395/200.09 [57] ABSTRACT
[58] Field of Searchccccoecnueee. 395/712, 200.09,
395/200.51, 232; 364/479.01; 380/4 Creators of computer software provide the most up-to-date
versions of their computer software on an update service. A
[56] References Cited user who has purchased computer software calls the update
service on a periodic basis. The update service automatically
U.S. PATENT DOCUMENTS inventories the user computer to determine what computer
4,796,181 1/1989 Wiedemerc.coorreeriiin 364/406 ~ software may be out-of-date, and/or need maintenance
5,047,928 9/1991 Wiedemer ... 364/406 updates. If so desired by the user, the update service com-
5,142,680 8/1992 Ottman et al. .c..cooverrerecrerecenne 395/712 puter automatically downloads and installs computer soft-
5,155,484 10/1992 Chambers, IV . ware to the user computer. By making periodic calls to the
5,155,680 10/1992 WIedemer w.ovvivieirieirin 364/406 ypdate service, the user always has the most up-to-date
géggﬂﬁ;‘z 1(1)/ }ggg glr(l’]‘llf.c et i’l' """""""""" ;22/ 4212(9)8491 computer software immediately available. The update ser-
5337 360 8;1 004 Flilszchelr etal s /479. vice may also alert the user to new products (i.e. including
5367686 11 /1994 Fisher ei al new help files, etc.), and new and enhanced versions of
5388211 2/1995 Hornbuckleooooooo. 39s/712 existing products which can be purchased electronically by
5,300,247 2/1995 Fischer . a user from the update service.
5421,009 5/1995 PLAtt oo 395/712
5,473,772 12/1995 Halliwell et al. . 24 Claims, 5 Drawing Sheets

10
/ -
fi—————— === = ——n INPUT
I 6 COMPUTER 12 1q | DEVICE
| ’ VR
| [MEMORY SYSTEM CPU |'} (KEYBOARD,
| 24 || POINTING
| N oAl DEVICE,
“TT" MODEM,
I MAIN 22| NETWORK
' MEMORY 22 | | CONNECTION,
| ze\ | ETC.)
| " (> REGISTERS | | |
! 30 |
I OUTPUT
I 28 l DEVICE
| SECONDARY ™ controL | | !
| STORAGE uNit [T (DISPLAY,
i 221 | PRINTER,
| 2 I MODEM,
| || NETWORK
L | | CONNECTION,
———————————————————— ETC.)

20

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 129 of 172

U.S. Patent Dec. 1, 1998 Sheet 1 of 5 5,845,077
b b
10
/ -
|- —————————————= ——n INPUT
| /16 COMPUTER 12 14 : DEVICE
| |
| [MEMORY SYSTEM CPU (KEYBOARD,
| 24 || POINTING
l N oA kel DEVICE,
| MODEM,
| MAIN 22| | NETWORK
! MEMORY 99 | | CONNECTION,
I 26\\ | ETC.)
' N) (, REGISTERS |
| 30 l
| || ourpur
I 28 DEVICE
| SECONDARY ™ CONTROL |
| STORAGE unit [TC™ (DisPLAY,
| 22l PRINTER,
| 29 || MODEM,
| || NETWORK
L | | CONNECTION,
———————————————————— ETC.)

20"

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 130 of 172

U.S. Patent Dec. 1, 1998 Sheet 2 of 5
38
UPDATE SERVICE 34
COMPUTER1__ 4, '
a
"“--“ .:
UTER 1
/40
»
= =
UPDATE SERVICE @Eﬁ\
COMPUTERN USER COMPUTER
UPDATE SERVICE
COMPUTER USER COMPUTER
52
B
1__.
5—
| 36 9—
1Y
48 54 50
3

5,845,077

34

N

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 131 of 172

U.S. Patent Dec. 1, 1998 Sheet 3 of 5 5,845,077
START FIG. 4A 76
SERVICE W
UPDATE
APPLICATION
SENDS oo
USER BEGINS SUMMARY B
UPDATE L REPORT TO
ACCESS 56 USER UPDATE
SEQUENCE APPLICATION
A
USER LAUNCHES USER SERVICE UPDATE
UPDATE APPLICATION /?s APPLICATION FLAGS |~

AVAILABLE SOFTWARE

A 4

USER CHOOSES — T
CONNECTION
METHOD 60 SERVICE UPDATE

APPLICATION |3,
ANALYZES USER
INVENTORY DATA

A

USER UPDATE]

APPLICATION TRIES TO

CONNECT TO UPDATE /—\62
SERVICE COMPUTER

USER UPDATE
APPLICATION SENDS
70

INVENTORY DATA TO
SERVICE UPDATE
UPDATE SERVICE APPLICXTION
COMPUTER LAUNCHES | —
SERVICE UPDATE o4
APPLICATION ‘
A
TWO-WAY SERVICE UPDATE
COMMUNICATIONS > APPLICATION
PATH SET UP BETWEEN REQUESTS USER | 3g
USER AND UPDATE |~ UPDATE APPLICATION
SERVICE COMPUTER INVENTORY USER

66 COMPUTER

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 132 of 172

U.S. Patent

USER UPDATE
APPLICATION
CREATES
OUTPUT
REPORT

OUTPUT
REPORT
EMPTY?

Dec. 1, 1998 Sheet 4 of 5 5,845,077
—78 _
EROM FI1G. 4B
FIG. 4A
8
80 e
USER

COMPUTER IS
CURRENT AND
UP TO DATE

A

A

NO
Y %i%‘:?g SERVICE
DISPLAY APPLICATION UPDATE
DESCRIPTIONS DOWNLOADS APPLICATION
OF AVAILABLE ALL COMPUTER DOWNLOADS
COMPUTER |—82 SOFTWARE AND INSTALLS
SOFTWARE CHOSEN ALL COMPUTER
BASED ON . SOFTWARE
OUTPUT REPORT NO o6 CHOSEN
A
! 94J
USER CHOOSES YES—|
WHICH
COMPUTER
SOFTWARE TO | 86 92
DOWNLOAD YES
USER UPDATE
APPLICATION
MAKES BACKUP UPDATE
COPIES AND USER
LOGS ALL COMPUTER
AFFECTED IMMEDIATELY? 90
SOFTWARE
COMPONENTS
NO
\ 4 /—98
COLLECT
END L RE-CONNECT
f INFORMATION
FROM USER

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 133 of 172

U.S. Patent Dec. 1, 1998 Sheet 5 of 5

FIG. 5

DELAYED TRANSFER
(START)

UPDATE
SERVICE
COMPUTER RE- -~
CONNECTS TO 100
USER
COMPUTER

v

SERVICE
UPDATE
APPLICATION
REQUESTS
USER UPDATE |~
APPLICATION | 402
BE LAUNCHED
ON USER
COMPUTER

v
USER UPDATE
APPLICATION
CREATES NEW
DIRECTORY FOR |
COMPUTER 104
SOFTWARE
Y
COMPUTER
SOFTWARE AND
INSTALLATION
APPLICATION |~
DOWNLOADED | 106
TO THE USER
COMPUTER
Y

UPDATE

SERVICE
COMPUTER
DISCONNECTS

FROM USER
COMPUTER

108

5,845,077

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 134 of 172

5,845,077

1

METHOD AND SYSTEM FOR IDENTIFYING
AND OBTAINING COMPUTER SOFTWARE
FROM A REMOTE COMPUTER

FIELD OF INVENTION

The present invention relates to a system for automati-
cally identifying software that may be appropriate for instal-
lation on a computer and for making that software available
to that computer. In particular the invention relates to a
remote system that inventories software installed on a
computer, identifies additional software that may be appro-
priate for the computer (e.g. patches, fixes, new versions of
existing software, new software, etc.), and makes the iden-
tified software available to that computer.

BACKGROUND AND SUMMARY OF THE
INVENTION

The continual and rapid development of computers, com-
puter software and related technology has revealed many
problems with the typical distribution channels for computer
software. For example, computer software, the coded
instructions that control a computer’s operation, are con-
stantly and incrementally being upgraded and improved.
The computer hardware and operating system environment
on which the computer software is used is continually being
changed, which requires additional changes in the computer
software (e.g. new device drivers, new operating system
calls, etc.).

A computer software developer will typically release an
initial version of a software product. Thereafter, as new and
improved computers and peripherals are developed, the
software product will commonly be upgraded so as to take
full advantage of the increased capabilities of the hardware.
In addition, a software developer, to remain competitive,
will often upgrade the software product to provide new
features and functionality.

With the ever increasing pace of advancement in com-
puter related technologies, software developers compete to
be the first to offer a new feature or upgrade. As a result,
sometimes software products are made available to the
public with unknown errors or defects. Similarly, software
products that work as intended on a particular computer with
a particular configuration, may fail when installed on a
different computer having a different configuration (e.g.
different hardware, peripherals, operating systems, etc.).
Software developers frequently provide fixes for their soft-
ware products to correct defects that were undetected or
unanticipated at the time the software product was released.
Fixes are also provided to allow the software product to
function correctly on a new computer or with a different
operating system environment.

However, it is often difficult for software developers to
make upgrades and fixes available to users. This difficulty
not only deprives the user of access to the most reliable and
up-to-date software products, it can result in lost sales to the
software developer and can damage the goodwill and the
development of a long term relationship with a customer by
releasing a flawed or deficient software product.

Commonly, mass distribution of commercial software
products is accomplished by copying the software product
onto storage media (e.g. CD-ROMs, floppy disks, magnetic
tapes, etc.). To take advantage of economies of scale,
typically a large number of copies of the software product
are made during the manufacture of a particular software
product. Then, the storage media containing the software
product is provided to distributors and retailers for sale to

10

15

20

25

30

35

40

45

50

55

60

65

2

users. However, given the rapid pace of software
development, this manner of distribution is frequently insuf-
ficient. For example, it is not uncommon that defects are
detected and fixes created shortly after a software product is
introduced to the public. However, the software products
that remain in the distribution chain contain the defect
without the fix. This situation is frustrating for users who
subsequently purchase the software product that is already
obsolete (i.e. because of the defects).

Software can also be distributed over electronic bulletin
board systems, the Internet, etc. In such systems, a user
connects to the bulletin board and then selects and down-
loads desired software. Such systems allow for rapid updat-
ing of software by simply supplying a new updated version
of the software to the bulletin board. However, such systems
also require a degree of user sophistication and technical
expertise in the selection, downloading and installation of
the new software. Moreover, such systems do not provide a
user that has already obtained a software product with a
simple, automatic way of learning of or obtaining upgrades
or fixes for that product. The software provider may also
have updated help files and other help utilities about which
a user would have no way of knowing.

In accordance with an illustrated embodiment of the
present invention, many of the problems associated with
obtaining computer software are overcome. A user, with a
user computer is allowed to access (e.g. with a modem, an
Internet connection, etc.) an update service at a remote
location on which is stored a variety of computer software.
When a user accesses the remote update service, an update
service computer conducts an automatic inventory of the
computer software on the user computer. The data collected
from the inventory of the user computer software is then
used to make comparisons to database entries from a data-
base on the update service computer. The database entries
contain information about computer software available on
the update service computer. The comparison is conducted
to identify software available from the remote update service
that might be appropriate for installation on the user com-
puter (i.e. new computer software, new versions of existing
computer software, patches or fixes for existing computer
software, new help files, etc.). After the comparison is
completed, the update service computer makes the computer
software stored at the remote update service computer
available to the user.

In one aspect of the invention, available computer soft-
ware can be downloaded from the remote update service
computer and installed immediately on the user computer.
Another aspect of the invention allows the update service
computer to contact the user computer at a later, more
convenient time, re-establish two-way communications,
then download and install available computer software on
the user computer. If a delayed download is requested, the
user will provide access information (e.g. phone number,
network address, a file of commands to execute to logon the
user computer, etc.) to the update service computer which
allows the remote update service computer to re-connect to
the user computer. The transfer may use an encryption
scheme to permit safe transfer of the software to the user
computer.

In yet another aspect of the invention, the system will
allow a user to purchase the available computer software
electronically. The user, for example, provides credit card
information, debit card information, an account number to
bill, etc. to the update service computer. Secure transaction
technology and/or digital signatures are used to safeguard
the payment information. After verifying the payment

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 135 of 172

5,845,077

3

information, the update service computer permits transfer of
the computer software.

The update service has several advantages. A user is
automatically provided with information about the available
versions of computer software as result of the inventory
conducted by the update center computer. If the version of
the computer software on the user computer has defects that
are known and have been corrected, the user is alerted to this
fact and is offered an up-to-date version of the computer
software. The user is also alerted to the availability of new
computer software, or enhanced versions of existing com-
puter software, and can purchase them electronically. In
either case, the most up-to-date versions of computer soft-
ware are available for downloading to users.

The available versions of the computer software can also
be automatically installed on the user computer. Since it is
no longer necessary for the user to install the computer
software, the incidence of user related installation problems
is greatly reduced. It is also not necessary for the user to
obtain or save any storage media since the computer soft-
ware is downloaded directly to the user computer. If the
computer software installed on the user computer ever gets
corrupted, the user can call the update service (e.g. for some
limited number of iterations) and download a new (and
up-to-date) copy of the computer software.

In addition to providing benefits for the user, the illus-
trated embodiment of the invention provides benefits to the
developers of the software. The developers of the computer
software save support, distribution, and advertising costs. A
user who calls the update service automatically obtains
up-to-date versions of available computer software, and may
never encounter defects which would have been encountered
using an earlier, defective version of the computer software.
As a result, a user will require less support from the
developers of the software will be more satisfied, and be
more willing to purchase future versions of computer soft-
ware. Since the computer software is downloaded to the user
computer, the developers of the computer software may save
distribution costs as fewer versions of the computer software
have to be copied to storage media and distributed. In
addition, since the user is also alerted when new computer
software, and/or new versions of existing computer software
are available, the software developers may also save adver-
tising costs.

The foregoing and other features and advantages of the
illustrated embodiment of the present invention will be more
readily apparent from the following detailed description,
which proceeds with reference to the accompanying draw-
ings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a computer system used to
implement an illustrated embodiment of the present inven-
tion.

FIG. 2 is a block diagram showing the update service
center and the remote user computers.

FIG. 3 is a block diagram showing the access processes on
the user and update service computers.

FIGS. 4A—4B are a flow chart showing an illustrative
sequence which is followed when a user calls the update
service.

FIG. 5 is a flow chart showing an illustrative sequence
which is followed when the update service re-connects to a
user computer.

DETAILED DESCRIPTION OF AN
ILLUSTRATED EMBODIMENT

Referring to FIG. 1, an operating environment for the
illustrated embodiment of the present invention is a com-

10

15

20

25

30

35

40

45

50

55

60

65

4

puter system 10 with a computer 12 that comprises at least
one high speed processing unit (CPU) 14, in conjunction
with a memory system 16, an input device 18, and an output
device 20. These elements are interconnected by a bus
structure 22.

The illustrated CPU 14 is of familiar design and includes
an ALU 24 for performing computations, a collection of
registers 26 for temporary storage of data and instructions,
and a control unit 28 for controlling operation of the system
10. Any of a variety of processors, including those from
Digital Equipment, Sun, MIPS, IBM, Motorola, NEC, Intel,
Cyrix, AMD, Nexgen and others are equally preferred for
CPU 14. Although shown with one CPU 14, computer
system 10 may alternatively include multiple processing
units.

The memory system 16 includes main memory 30 and
secondary storage 32. Illustrated main memory 30 is high
speed random access memory (RAM) and read only
memory (ROM). Main memory 30 can include any addi-
tional or alternative high speed memory device or memory
circuitry. Secondary storage 32 takes the form of long term
storage, such as ROM, optical or magnetic disks, organic
memory or any other volatile or non-volatile mass storage
system. Those skilled in the art will recognize that memory
16 can comprise a variety and/or combination of alternative
components.

The input and output devices 18, 20 are also familiar. The
input device 18 can comprise a keyboard, mouse, pointing
device, sound device (e.g. a microphone, etc.), or any other
device providing input to the computer system 10. The
output device 20 can comprise a display, a printer, a sound
device (e.g. a speaker, etc.), or other device providing output
to the computer system 10. The input/output devices 18, 20
can also include network connections, modems, or other
devices used for communications with other computer sys-
tems or devices.

As is familiar to those skilled in the art, the computer
system 10 further includes an operating system and at least
one application program. The operating system is a set of
software which controls the computer system’s operation
and the allocation of resources. The application program is
a set of software that performs a task desired by the user,
making use of computer resources made available through
the operating system. Both are resident in the illustrated
memory system 16.

In accordance with the practices of persons skilled in the
art of computer programming, the present invention is
described below with reference to symbolic representations
of operations that are performed by computer system 10,
unless indicated otherwise. Such operations are sometimes
referred to as being computer-executed. It will be appreci-
ated that the operations which are symbolically represented
include the manipulation by CPU 14 of electrical signals
representing data bits and the maintenance of data bits at
memory locations in memory system 16, as well as other
processing of signals. The memory locations where data bits
are maintained are physical locations that have particular
electrical, magnetic, optical, or organic properties corre-
sponding to the data bits.

As is shown in FIG. 2, the illustrated embodiment of the
invention consists of one or more user computers 34 which
are connected over communications links 36 to an update
service center 38. The update service center consists of one
or more second remote computer(s) 40, one or more com-
munications links 36, and one or more databases 42.

The update service center 38 consists of one or more
computers 40 (e.g. the computer that was described in FIG.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 136 of 172

5,845,077

5

1) which are capable of simultaneous access by a plurality
of user computers. If a plurality of update service computers
are used, then the update service computers may be con-
nected by a local area network (LAN) 44 or any other similar
connection technology. However, it is also possible for an
update service center to have other configurations. For
example, a smaller number of larger computers (i.e. a few
mainframe, mini, etc. computers) with a number of internal
programs or processes running on the larger computers
capable of establishing communications links to the user
computers. The update service center may also be connected
to a remote network (e.g. the Internet) or a remote site (e.g.
a satellite) (which is not shown in FIG. 2). The remote
network or remote site allows the update service center to
provide a wider variety of computer software than could be
stored at the update service center. One or more databases 42
connected to the update center computer(s) 40 are used to
store database entries consisting of computer software avail-
able on the update service computer(s). The update service
computer(s) also contain a plurality of communications links
36 such as telecommunications connections (e.g. modem
connections, ISDN connections, ATM connection, frame
relay connections, etc.), network connections (e.g. Internet,
etc.), satellite connections (e.g. Digital Satellite Services,
etc.), wireless connections, two way paging connections,
etc., to allow one or more user computers to simultaneously
connect to the update service computer(s). The connections
are managed by an update server 46.

After a user computer establishes two-way communica-
tions with the update service computer, an inventory of
computer software on the user computer is completed with-
out interaction from the user, sent to the update service
computer, and compared to database entries on the update
service computer. The database entries from the database
connected to the update service computer contain informa-
tion about computer software which is available to a user.
After the comparison, the user computer is sent back a
summary of available computer software which is displayed
for the user. The summary contains information such as the
availability of patches and fixes for existing computer
software, new versions of existing computer software, and
brand new computer software, new help files, etc. The user
is then able to make one or more choices from the summary
of available computer software, and have the computer
software transferred from the update service computer to the
user computer. The user may choose to update on the fly, or
store update information for future update needs.

As is shown in FIG. 3, running on the update service
computer(s) 40 is one or more service update applications
(SUA) 48 that will communicate with a user update appli-
cation (UUA) 50 on the user computer when the update
service is contacted by the a user with a user computer. The
user update application 50 is a computer software program
that is capable of initiating, establishing and terminating
two-way communications with an update service application
on the update service computer. The service update appli-
cation 48 is a computer software program which is also
capable of initiating, establishing and terminating two-way
communications with a user update application on a user
computer.

To access the update service center 38, a user starts a user
update application (UUA) 50 on the user computer 34 to
begin the access process. The user update application 50
tries to establish a two-way communications link 36 with an
update service computer 40 using a modem, a network
connection (e.g. Internet), etc. However, this access can also
be completed by a variety of other methods which provide

10

15

20

25

30

35

40

45

50

55

60

65

6

two-way data transfer. As the user update application 48 on
the user computer 34 tries to establish a two-way commu-
nications link 36 to the update service computer 40, the
update service computer starts a service update application
(SUA) 48. The service update application on the update
service computer then tries to establish a two-way commu-
nications link to the user update application on the user
computer. This is shown by the dashed lines 52 in FIG. 3.
This communications link can be established with a network
protocol stack, (e.g. TCP/IP) through sockets, or any other
two-way communications technique known in the art.

After establishing a two-way communications link, the
service update application conducts an automatic inventory
(i.e. without input from the user) of the computer software
on the user computer. The data collected during the inven-
tory is sent from the user computer to the remote update
service computer. The service update application on the
update service computer compares the inventory data col-
lected from the user computer to data stored in a database on
the update service computer. The database contains infor-
mation on available computer software available from the
update service. The update service computer then creates a
summary and sends the summary to the user computer. The
summary 54 is then presented to the user by the user
computer. The summary contains information about com-
puter software available on the update service computer
such as the availability of patches and fixes for existing
computer software, new versions of existing computer
software, and brand new computer software, etc. In addition,
the availability of agent help files, wizards, inference engine,
and other operating system components will be listed in the
summary.

The illustrated embodiment of the invention is imple-
mented in the Microsoft Windows 95 operating system by
the Microsoft Corporation of Redmond, Wash. using a
modem, or an Internet network connection, for access to the
update service computer. The invention can likewise be
practiced with other operating systems and other access
technologies that allow two-way data transfer.

As is shown in the flowchart in FIG. 4A, a user begins the
access sequence (56) to an update service by launching a
user update application included in the Windows® 95 oper-
ating system. However, the user update application can also
be any application that is capable of two-way
communications, and run under other operating systems.
The user update application allows the user computer to
establish a two-way communications path for access to the
update service computer.

When the user update application starts (58), the user is
shown optional help information which instructs the user on
how to establish a connection between the user computer
and the update service computer. The actual connection
configuration is completed by allowing a user to choose the
appropriate connection method (60). For example, the user
may choose to establish the connection with a modem. If a
modem is chosen, the phone number to dial, modem (e.g.
speed, line type, etc.) and communications parameters (e.g.
parity, stop bits, etc.) are then configured. If the user chooses
to make a network connection (e.g. Internet, etc.) to access
the update service, the network address of the update service
and other network parameters are configured. A similar
sequence would be completed for other connection tech-
nologies.

When the user update application attempts to make the
desired connection (60), the update service computer
launches a service update application (64). A two-way

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 137 of 172

5,845,077

7

communications path (66) is set up between the service
update application on the update service computer and the
user update application on the user computer. The service
update application on the update service computer then
requests that the user update application on the user com-
puter conduct an automatic inventory of all computer soft-
ware installed (68) on the user computer.

In the illustrated system, this inventory is done automati-
cally (i.e. without input from the user), and is completed by
assigning the inventory task to a Windows 95 operating
system process thread on the user computer. The operating
system thread completes the task in the “background” while
the user is performing other activities in the “foreground”
(e.g. choosing options from the user update application). In
reality, there are no real background and foreground
processes, just a number of operation system process and
process threads which are run for some specified time
interval by the operating system. Threads are well known in
the art and are used in other operating systems such as
Windows NT by Microsoft, and OS/2 by IBM. However,
other operating system techniques could also be used to
accomplish the inventory on the user computer.

During the inventory, data is collected about all computer
software installed on the user computer. Data such as the
software title, date, version, file size, file checksum, direc-
tory location on the user computer, etc. are collected. After
the inventory is complete, the user update application sends
(70) the inventory data from the user computer to the service
update application on the update service computer. The
service update application compares the user inventory data
from the user computer to database entries in the computer
software database to automatically analyze the computer
software stored on the user computer (72). The database
connected to the update service computer has entries which
contain information about available computer software. The
database entries also identify and describe, for example,
components of the computer software, including new com-
puter software, patches, fixes, new help files, wizards, infer-
ence engines, other operating system components, updates
as well as enhancements and new features of existing
computer software. The database entries describing new
computer software may also include entries describing brand
new computer software (i.e. computer software that is newly
created, and not previously existing).

Any computer software installed on the user computer
which is listed in the database on the update service com-
puter (e.g. out-of-date and/or require a maintenance update,
etc.) is flagged as available (74). The user computer may
also contain computer software that is not known by the
update service. If the user computer contains computer
software which is unknown to the update service computer,
this computer software is marked as unknown by the update
service computer. After the service update application com-
pletes the analysis of user computer software, a summary
report is sent back to the user computer from the update
service computer (76).

In the illustrated system, the user can choose from several
update service options. One option may be to check for
maintenance updates for all computer software installed on
the user computer that is known by the update service. A
second option may be to check only specific computer
software, or a specific group of computer software stored on
the user computer for maintenance updates. For example, if
the user wanted to check and see if there were any mainte-
nance updates for a particular word processing program,
option two would be selected. A third option may be to check
whether there are any new or enhanced versions of computer

10

15

20

25

30

35

40

45

50

55

60

65

8

software available from the update service. A fourth option
may be to check only for new versions of specific computer
software or groupings of computer software installed on the
user computer. A fifth option may be to check the update
service computer for information on new computer software
(i.e. brand new products, not new or enhanced versions of
existing products). A sixth option may be to check only if
there are new help files, or other new support data available.
This list of options is not intended to be all inclusive, as
other options can be added to provide additional update
service functionality. Based on user input, the user update
application creates an output report (78) (FIG. 4B) based on
the option(s) chosen by the user and the summary report
created by the service update application. The service update
application can also create the output report directly, using
default choices with no input at all from a user.

If the output report is not empty (80), a second optional
report is created and displayed for the user providing a short
description that summarizes the computer software available
from the update service (82). This second optional report is
used by the user to determine what computer software on the
user computer will be updated, if any. If the output report is
empty, the computer software on the user computer is
current and up-to-date (84), so no further action by either the
update service computer or the user computer is required.

If the output report is not empty, then the user is asked to
choose which available computer software shown in the
output report, if any, will be downloaded and installed on the
user computer (86). No software is downloaded without the
user’s permission. If one or more computer software com-
ponents (i.e. pieces or parts of the available computer
software) are chosen by the user, the user update application
is instructed to make backup copies of all of the computer
software components on the user computer that will be
affected, and create a log for the user documenting which
computer software will be replaced (88). The backup copies
and the log can be used by the user to restore the original
version of the computer software components on the user
computer if a need arises to do so.

The user has the option of choosing none, one, or a
number of computer software components to download and
install. If the list of available computer software to be
downloaded and installed is large, the user also has the
option of delaying the update to a later time (90). If the user
chooses an immediate download, the user is asked if the
service update center should also install the computer soft-
ware chosen by the user (92) after downloading.

If immediate installation is chosen, the service update
application on the update service computer downloads the
available software to the user computer and installs the
software in the proper place (e.g. in the proper directory or
subdirectory) on the user computer (94). Alog is also created
that records what computer software was downloaded to the
user computer. If immediate installation is not chosen by the
user, the user can save any update information, and continue
with other tasks before deciding when to download any
software chosen by the user.

If the user chooses a delayed update, the user provides
re-connect information (98) that allows the update service
computer to re-connect to the user computer at a more
convenient time (e.g. midnight, etc.) and complete the
downloading and installation at that time.

As part of the re-connect information, the user may create
alogon script using an automated macro language to provide
the logon sequence to be used, and the directory to be used
to download the software chosen by the user. The logon

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 138 of 172

5,845,077

9

script and the time the user wishes to have the chosen
software downloaded are then sent to the update service
computer, and stored in an update service computer data-
base. At the appropriate time chosen by the user, the update
service will execute the logon script to re-connect to the user
computer, and download the chosen software in the proper
directory. An encryption scheme may also be used to permit
safe transfer of the software to the user computer.

The user also has the option of choosing a logon method
different then the one they are currently connected to the
update service center with. For example, if a user is con-
nected to the update service center with a modem, the user
may choose to have the chosen software downloaded at a
later time using a network connection (e.g. Internet, etc.)
However, the user’s computer must be capable of accepting
software with a different connection method.

To allow a re-connection using a modem, the user would
enter the phone number of the phone line attached to the user
computer and send this information to the update service
computer. The user would leave the user computer and
modem on, and set the communications software in an
answer mode to answer any incoming calls. For a network
re-connection, the user would provide the update service
computer the user network address and set the network
software in a host mode to process any network connection
attempts.

The delayed downloading is illustrated in the flow chart in
FIG. 5. To complete the delayed downloading, the update
service computer launches a service update application that
tries to re-connect (100) to the user computer. The update
service application will use the information provided at an
earlier time by a user (e.g. modem logon information,
network logon information, a logon script, etc.). If the
connection is successful, a service update application on the
update service computer asks the user computer to launch a
user update application to re-establish a two-way commu-
nications path (102). The re-connect to the user computer
may be completed using a different access method than was
used during the original user computer-update service com-
puter connection. For example, the update service computer
may request a digital satellite system re-connect to the user
computer instead of the update service computer. A different
access method is typically chosen to provide the most
efficient and greatest bandwidth data transfer between the
update service computer and the user computer.

After establishing a new two-way communications path,
the user update application creates a new directory (104) on
the user computer, where the computer software is trans-
ferred and stored (106). A log is also created to document
what available computer software was transferred to the user
computer. Included with the downloaded computer software
is an installation application that will be used later by the
user to install the computer software. When the transfers are
complete, the update service computer terminates the con-
nection to the user computer (108). An encryption scheme
may also be used to permit safe automated transfer of the
software to the user computer.

When the user is ready to install the computer software
(e.g. the next morning if the computer software was trans-
ferred and installed in the middle of the night), the user
simply launches the installation application supplied by
update service computer.

Leaving the user an installation application to execute is
an added safety and security measure for both the user and
the update service. The user computer is not updated unless
the user personally starts the installation process. However,

10

15

20

25

30

35

40

45

50

55

60

65

10

the user can also choose to have the computer software
automatically installed by the update service when it
re-connects to the user computer (but, user permission is
always obtained and recorded first). In this case, the instal-
lation application is not downloaded to the user computer.
However a log is created so a user can determine what
available computer software was downloaded and installed.

As was described above, the third, fourth, and fifth
options allow a user to check for new versions of existing
computer software, or new computer software available
from the update service. If a new version of existing
computer software, or new computer software is available,
the user is asked if they wish to purchase the computer
software. If so, the appropriate fee is requested from the
user. The user can pay the fee electronically by transmitting
credit card information, debit card information, billing
account information, etc. to the update service computer
from the user computer. Digital signatures, secure transac-
tion technology, or an encryption scheme may also be used
to collect payment information from the user. Once the fee
information is collected by the update service computer and
is verified, the user can choose between immediate or
delayed downloading of the new, or new version of the
computer software following steps (88-98) (FIG. 4B)
described above.

Since new versions of computer software are typically
very large, the user will be informed that a delayed instal-
lation is probably most efficient for the user. If a delayed
installation of a new product is chosen, the update service
computer will then re-connect to the user computer at a later
time and download the new version of the computer soft-
ware as was shown in FIG. 5. In the illustrated embodiment,
the update service uses a digital satellite service link, or
some other higher bandwidth connection to transfer the
computer software to the user computer whenever possible.

If the user chooses not to pay for a new version of
computer software when the update service is called, addi-
tional data from which the user can obtain more information
on the new computer software is displayed. For example, the
information may contain a summary of the features of the
new computer software and the information may also con-
tain a list of retail outlets close to the user where the user
may then purchase a new version of computer software on
storage media if desired. Some users may prefer to obtain
the computer software on storage media and call the update
service to obtain up-to-date versions of the computer soft-
ware.

With automatic downloading and installation of computer
software from the update service, the user is relieved from
the burden of obtaining computer software (e.g. on storage
media, by downloading from a bulletin board or on-line
service, etc.), and installing the computer software on the
user computer. Once a user purchases computer software,
periodic calls to the update service will keep the user current
and up-to-date.

It should be understood that the programs, processes, or
methods described herein are not related or limited to any
particular type of computer apparatus, unless indicated oth-
erwise. Various types of general purpose or specialized
computer apparatus may be used with or perform operations
in accordance with the teachings described herein.

Having illustrated and described the principles of the
present invention in an illustrated embodiment, it should be
apparent to those skilled in the art that the embodiment can
be modified in arrangement and detail without departing
from such principles. For example, elements of the illus-

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 139 of 172

5,845,077

11

trated embodiment shown in software may be implemented
in hardware and vice versa. Similarly, hardware and soft-
ware components can be interchanged with other compo-
nents providing the same functionality.

In view of the wide variety of embodiments to which the
principles of this invention can be applied, it should be
understood that the illustrated embodiments are exemplary
only, and should not be taken as limiting the scope of my
invention. Rather, I claim as my invention all such embodi-
ments as come within the scope and spirit of the following
claims and equivalents thereto.

I claim:

1. In a computer system having a first computer in
communication with a remote second computer, the second
computer having access to a database identifying software
remotely available to the first computer, wherein at least one
item in the database identifies software installable on the
first computer, a computer implemented method for identi-
fying computer software available for installation on the first
computer, the method comprising, at the second computer:

retrieving from the first computer to the second computer

an inventory identifying at least certain computer soft-
ware installed on the first computer;

comparing the inventory of computer software with the

database to identify computer software available to the
first computer and not installed on the first computer;
preparing for presentation at the first computer software
information indicating software available to the first
computer and not installed on the first computer; and
sending the software information to the first computer,
said information including an alert about a defect in
software on the first computer correctable by software
available to the first computer and not installed thereon.

2. A computer readable medium having computer execut-
able instructions for performing the method recited in claim
1.

3. The method of claim 1 wherein the software informa-
tion comprises purchase information associated with soft-
ware available to the first computer and not installed on the
first computer.

4. The method of claim 1 wherein the software informa-
tion comprises a description summarizing features of new
software available to the first computer and not installed on
the first computer.

5. The method of claim 1 wherein the software informa-
tion comprises a software title, a software date, a software
version, a software file size, a software location, and a
description of software functionality.

6. The method of claim 1 wherein the second computer is
in communication with a third remote computer, the third
computer having a second database containing database
entries listing a plurality of computer software available to
the first computer, the method further comprising:

consulting the third remote computer to compare the

inventory with the second database, thereby identifying
computer software available to the first computer and
not installed on the first computer.

7. The method of claim 1 further comprising:

receiving at the second computer a user software selection

indicative of desired software; and

transferring from the second computer to the first com-

puter software indicated by the user software selection.

8. The method of claim 7 further comprising:

collecting payment information from the first computer to

pay for the software indicated by the user software
selection.

10

15

20

25

30

35

40

45

50

55

60

65

12

9. The method of claim 7 wherein the software indicated
by the user software selection is transferred to the first
computer in an encrypted format over a public network.

10. In a computer system having a first computer in
communication with a remote second computer, the second
computer having access to a database identifying software
available to the first computer, wherein at least one item in
the database identifies software installable on the first
computer, a computer implemented method for identifying
computer software available for installation on the first
computer, the method comprising, at the first computer:

conducting an inventory of the first computer, the inven-

tory identifying at least certain computer software
installed on the first computer;

sending from the first computer to the second computer

the inventory for comparison to the database;

receiving from the second computer a software summary
indicating software available to the second computer
and not installed on the first computer, said software
summary including an alert about a defect in software
on the first computer correctable by software available
to the first computer but not installed thereon; and

presenting the software summary on the first computer.

11. A computer readable medium having computer
executable instructions for performing the method recited in
claim 10.

12. The method of claim 10 wherein the database iden-
tifies at least one new software product.

13. The method of claim 10 further comprising:

receiving at the first computer a selected category for

restricting presented summary information; and
restricting the software summary to software in the
selected category.

14. The method of claim 10 further comprising:

receiving at the first computer a user selection from the

software summary, the user selection indicating desired
software;

backing up software components on the first computer

affected by the desired software;

downloading the desired software to the first computer;

and

installing the desired software on the first computer.

15. The method of claim 14 wherein the desired software
is downloaded to the first computer with a digital signature
over a public network.

16. The method of claim 10 further comprising:

receiving at the first computer a user selection from the

software summary, the user selection indicating desired
software; and
downloading the desired software to the first computer.
17. In a computer system having a user computer in
communication with a remote update service computer
having access to a database identifying software available to
the update service computer, wherein at least one item in the
database identifies software installable on the user computer,
a computer implemented method for transferring computer
software to the user computer, the method comprising:
establishing a first communications session between the
user computer and the update service computer;

collecting an inventory during the first session from the
user computer to identify at least certain computer
software installed on the user computer;

comparing the inventory of computer software on the user

computer with the database to identify software avail-

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 140 of 172

5,845,077

13

able to the update service computer and not installed on
the user computer;

presenting at the user computer software information
indicating software available to the update service
computer and not installed on the user computer, said
information including an alert about a defect in soft-
ware on the user computer correctable by software
available to the user computer and not installed
thereon;

receiving a selection of software from the software infor-
mation during the first session;

saving a list indicating the software selected;

during the first session, retrieving reconnection informa-
tion to the update service computer from the user
computer for establishing a second communications
session with the user computer;

terminating the first communications session;

establishing a second communications session between
the user computer and the update service computer
using the reconnection information; and

transferring during the second communications session
software indicated by the saved list from the update
service computer to the user computer.

18. The method of claim 17 wherein the second commu-
nications session is scheduled by a user to automatically take
place at a time more convenient for transferring software
than the first.

19. The method of claim 17 wherein the reconnection
information comprises computer software billing informa-
tion collected from the user computer using secure transac-
tion technology.

20. The method of claim 17 wherein the reconnection
information comprises a list of commands executable to
establish the second communications session.

21. The method of claim 17 wherein the second commu-
nications session is completed using an access method
different from the first.

22. In a computer, a software delivery system for provid-
ing software to a remote computer, the delivery system
comprising:

10

15

20

35

40

14

a database containing entries indicative of software avail-
able to the remote computer;

an inventory collector operable for receiving from the
remote computer an inventory of software indicating at
least certain software installed at the remote computer;

a comparer operable for identifying software in the data-
base and not in the inventory; and

a report generator operable for generating a summary of
the software in the database and not in the inventory for
presentation to a user at the remote computer, the
summary including an alert about a defect in software
on the remote computer correctable by software avail-
able to the remote computer and not installed thereon,
the report generator further operable for sending the
summary to the remote computer.

23. The delivery system of claim 22 further comprising:

a selection receiver operable for receiving a user selection
from the summary;

a software collection comprising software indicated by
the database and installable at the first computer; and

a transferor operable for transferring computer software in
the collection indicated by the user selection to the
remote computer.

24. A method of updating software earlier installed on a
first computer from a library of software stored on a second
computer, comprising:

identifying software earlier installed on the first computer;

identifying to a user of the first computer a software
update that is available on the second computer corre-
sponding to software identified as earlier installed on
the first computer, and alerting the user to a defect in
the earlier installed software that would be correctable
by installation of said software update; and

in response to user authorization, sending said software
update from the second computer to the first computer.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 141 of 172

Exhibit |

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 142 of 172

US005941947A
United States Patent i (1] Patent Number: 5,941,947
Brown et al. 451 Date of Patent: Aug. 24, 1999
[541 SYSTEM AND METHOD FOR 5,367,621 11/1994 Cohen et al. .
CONTROLLING ACCESS TO DATA 5371852 12/1994 Attanasio .
ENTITIES IN A COMPUTER NETWORK 5388255 /1995 Pydik etal..
5,396,626 3/1995 Nguyen .
[751 Inventors: Ross M. Brown. Bellvue; Richard G. : :
Greenberg, Redmond. both of Wash. (List continued on next page.)
OTHER PUBLICATIONS
{731 Assignee: Microsoft Corporation, Redmond,
Wash. Operating System Concepts, Fourth Edition, Abraham Sil-
berschatz and Peter B. Galvin, pp. 361-380. 431457,
[21] Appl No.: 08/516,573 ©1934.
Inside Windows NT, Helen Custer Foreword by David N.
[22] Filed: Aug. 18, 1995 Cutler. The Object Manager and Object Security, Chapter
[51] It CL° ... GOGF 17/00 |hree. pp. 49-81. ©1993. _ .
[S2] U.S. Cle oo 709/225 So...Just What is this First Class Thing Anyway? (visited
. Oct. 10, 1995) <hitp://orion.edmonds.wednet.edw/ESD/FC/
[58] Field of Search 395/200.55. 200.56. AboutFC.html>
395/200.47. 200.48. 200.49. 186, 187.01.) o . . - .
188.01: 380/23. 24. 25: 709/225 Colton, Malcolm. “Replicated Data in a Distributed Envi-
’ ronment,” JEEE (1993).
(561 References Cited (List continued on next page.)
U.S. PATENT DOCUMENTS Primary Examiner—Ellis B. Ramirez
4,184200 1/1980 Wagner et al. .ooeeoenreencnvicnnneae 395/188 Atrtomey, Agent, or Firm—Leydig. Voit & Mayer. Ltd.
4280176 7/1981 Tan 395/188
4432057 2/1984 Daniell et al. . [57] ABSTRACT
4,493,024 171985 Baxter, Il et al. .cevvereeerreenrenns 395/188 R .
4799153 1/1989 Hamd et al. wocrercorcomscomcorce 380r25 Access rights of users of a computer network with respect to
4799156 1/1989 Shavitet al. . data entities are specified by a relational database stored on
4,800,488 1/1989 Agrawal et al. . one or more security servers. Application servers on the
4,858,117 8/1989 Dichiara et al. .cceveeerienrenene 395/188 network that provide user access to the data entities generate
4,899,136 2/1990 Beard etal. . queries to the relational database in order to obtain access
4914571 4/1990 Baraz etal. . rights lists of specific users. An access rights cache on each
g?}’gzg; ;ﬁggg xkki‘:“‘;“t al 395/325 application server caches the access rights lists of the users
5140689 8/1992 Kobay:};shi T . that are connected to the respective application server. so
5:1 5 12989 9/1992 Johnson et al that user access rights to specific data entities can rapidly be
5187790 2/1993 Fastetal . determined. Each user-specific access rights list includes a
5247676 9/1993 Ozuretal. . series of category identifiers plus a series of access rights
5257369 10/1993 Skeen et al. . values. The category identifiers specify categories of data
5265250 11/1993 Andrade et al. . entities to which the user has access, and the access rights
5291597 3/1994 Shorteretal. . values specify privilege levels of the users with respect to
5307490 4/1994 Davidson etal. . the corresponding data entity categories. The privilege lev-
5321841 6/1994 Eastetal.. els are converted into specific access capabilities by appli-
ggi?g;g ;ﬁggﬁ g;’fine;a:]: _ cation programs running on the application servers.
5347632 9/1994 Filepp etal. .
5,355,497 10/1994 Cohen-Levy . 66 Claims, 10 Drawing Sheets

W SPONSF

ACCLBS (U

I <TEP TAREN Y S ORI FR\FR
A0 ACL S5
UERY QR USLR %

MUMBLR TABLE
13 DENTEY CROUPS N WA
USER N (S A WEMBER

Chns VRO U M'N IAL-u
10 N uwm S|
Cr

muﬂ 10 SUSH GO TENT CATEGORILS

RIGHT:

ACCESE AVCUUN |- 10REN 1AHLE
15% 4R TAIN. AN ALDI RIN AL
KICHIS THAT HAVL BLLN GIVLS
TO USER M

SORTIORENS OF HDENHEIEDY CONTENT
CATLERNALS W ASCLNDING
BUMCRICAL OROER

o
1K1 CALLNG

R
FRV[R

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 143 of 172

5,941,947
Page 2

5.423,003
5,434,994
5,444,848
5,455,932
5463,625
5473599
5475819
5481720
5,483,652
5490270
5,491,800
5.491 817
5.491.820
5,497,463
5,499,342
5,500,929
5513314
5526491
5,530,852
5,544,313
5,544,327
5,548,724
5,548,726
5,551,508
5,553,239
5553242
5,559,969
5,564,043
5,572,643
5,581,753
5,592,611
5,596,579
5,596,744
5,608,865
5,608,903
5,617,568
5,617,570
5,619,632
5,650,994
5,666,519
5,675,723
5,675,796
5,696,895
5,774,668

U.S. PATENT DOCUMENTS

6/1995
7/1995
8/1995
10/1995
10/1995
12/1995
12/1995
171996
1/1996
2/1996
2/1996
2/1996
2/1996
3/1996
3/1996
3/1996
4/1996
6/1996
6/1996
8/1996
8/1996
8/1996
8/1996
9/1996
9/1996
9/1996
9/1996
10/1996
1171996
12/1996
171997
171997
171997
3/1997
3/1997
4/1997
4/1997
4/1997
711997
9/1997
1071997
10/1997
121997
6/1998

Berteau .
Shaheen et al. .
Johnson et al. .
Major et al. .
Yasrebi .
Lietal .
Miller et al. .
Loucks et al. .
Sudama et al. .

Devarakonda et al. .

Goldsmith et al. .
Gopal et al. .
Belove et al. .
Stein et al. .
Kurihara et al. .
Dickinson .
Kadasamy et al. .
Wei .

Meske et al. .
Shachanai et al. .
Dan et al. .
Akizawa et al. .
Pettus .

Pettus et al. .
Heath et al. .
Russell et al. .
Jenuings .
Siefert .

Judson .

Terry et al. .
Midgely et al. .
Yasrebi .

Dao .

Midgely et al. .
Prasad et al. .
Ault et al. .
Russell et al. .
Lamping et al. .
Daley .

Hayden .

Ekrot et al. .
Hodges et al. .
Hemphill .
Choquire et al. .

OTHER PUBLICATIONS

Coulouris et al.. “Distributed Transactions.” Chapter 14 of
Distributed Systems Concepts and Design 2™ Ed., 409421
(1994).

Cox. John, “Sybase Server to Add Complexity User for
Challenge with Data Replication.” Communication No. 483
(1993).

Eckerson, Wayne, “Users Give Green Light for Replica-
tion.” Network World (Jul. 19. 1993).

Edelstein, Herb. “The Challenge of Replication.” DBMS vol.
8. No. 4. 68 (Apr. 1995).

Edelstein, Herb. “Microsoft and Sybase are Adding their
Unique Touches to SQI Servers.” Information Week, No.
528. 62 (1995).

Edelstein. Herb. “Replicating Data.” DBMS vol. 6. No. 6, 59
(Jun. 1993).

Gouhle. Michael. “RDBMS Server Choice Gets Tougher.”
Network World, 52 (May 23. 1994).

Heylighen, Francis. “World-Wide Web: A Distributed
Hypermedia Paradigm for Global Networking.” Proceed-
ings of the SHARE Europe Spring Conference, 355-368
(1994).

International Telecommunications Union, CCITT Blue Book
vol. VIII Data Communication Networks Directory, 3-18
(1989).

King, Adrian. “The User Interface and the Shell.” Inside
Windows 95, Chapter 5 (1994).

Pallatlo. John, “Sybase Lays Out Blue Print for Client/
Server Networks,” PC Week, vol. 9. No. 461, 6 (1992).
PR Newswire Association. Inc.. “America On-line Publicly
Previews World Wide Web Browser,” Financial News Sec-
tion (May 9, 1995).

Quereshi. “The Effect of Workload on the Performance and
Availability of Voting Algorithms.” JEEE (1995).

Rexford, Jennifer, “Window Consistent Replication for
Real-Time Applications.” IEEE (1994).

Richman, Dan, “Sybase to Enhance RDBMS.” Open System
Today, No. 111 (1992).

Terry, Douglas. “Session Guarantees for Weekly Consistent
Replicated Data,” IEEE (1994).

Wang. Yongdong, “Data Replication in a Distributed Het-
erogenous Database Environment,” /EEE (1994).

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 144 of 172

U.S. Patent Aug. 24, 1999 Sheet 1 of 10 5,941,947
™ WosT DaTA CENTER R T

IS — A

104~ | S l
|
| |
| |
w |
|)
| / 120 [

ACCESS

RIGHTS
DATABASE

|
|
|
|
}
|
|
|
|
|
|
--132 '
— e Y ‘
Igas | I
: | 1Internet :
ez i |Feed
140 i i T
D 08] 160 :
706 n <: } , | |
|
102 : ! | | |
I caTEWAY | 20 | |
D ez I I B . :
DS

' |

| 740 134
702~ JO8. VA | - ___ s |
D IDirSrv { l
WAN * | GATEWAY I | !
|
702 087 | : &i [|
- — AR
R ' =, '
V740 { 720 | |
02 we| /—~>~—— |-————————— |
D s |

. []

5 WAY S '
o8 GATE . |
152 |
| sEcuRITY ||
SS |
S |
|
|
|
|

/A e ’

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 145 of 172

5,941,947

Sheet 2 of 10

Aug. 24, 1999

U.S. Patent

uaxo) Ajundag

sboj4

Q| uooj

gl dnoug ad1ARS

gl uonoolddy

gl A43u3 Au030841Q

SWDON

saijJadodd 8 9pON

c 9L

>~ oz

JOVISIANVYN ALSI]

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 146 of 172

U.S. Patent

FIG. S

Aug. 24, 1999 Sheet 3 of 10 5,941,947
Access Control Matrix 300\\
Node O Node 1 oo Node i
User 1 XXXX XXXX XXXX
User 2 XXXX XXXX XXXX
User N :\ XXXX 1 [XXXX XXXX
F1G. IA
/,
! User Privilege Level
;" (Bit 0 Viewer
:“ Bit 1 Observer
Bit 2 User
Bit 3 Host
ﬁ Bit 4 Sysop Manager
Bit 5 Sysop
Bit 6 SuperSysop
LBits 7-15| (Reserved For Future Definition)
FIG. 35

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 147 of 172

U.S. Patent Aug. 24, 1999 Sheet 4 of 10 5,941,947
.500’\\
Token 1 Token 2 Token |
User 1 XXXX XXXX XXXX
User 2 XXXX XXXX XXXX
®
L
[]
User N XXXX XXXX XXXX
Security Token Name (Content Category)
1 Internal Public
2 internal 18—and—Older
3 Internet Public
4 Internet 18—and—Older
L 2
]
L]
100 Corporation X Beta Test Dato
101 Family ond Friends for
Brown Family
®
®
L J

FIG. 45

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 148 of 172

U.S. Patent

300"

7

502 <

Y

504 <

Aug. 24, 1999 Sheet 5 of 10 5,941,947
Token 1 Token 2 oo Token j
Group 1 XXXX XXXX XXXX
Group 2 XXXX XXXX XXXX
.
L]

Group X XXXX XXXX XXXX
User A XXXX XXXX XXXX
User B XXXX XXXX XXXX

.
[]
Group ID Group
1 Everyone
2 AllSysops
3 SuperSysops
4 Guest
5 Registration /Sign—Up
6 18—and—O0Older Access
®
[]
®

FIG. 55

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 149 of 172

5,941,947

Sheet 6 of 10

Aug. 24, 1999

U.S. Patent

e e o e - e . —— —— —r . e o—— o —— S - — — —— — —— e e emm e e e e e e T S

— —— e et v - . ——— —— —— — . — e m— — - m— e dm e Sy

cos
G082 089

® ®

[] []

® []
. HOZ00 S Z L Z
¢ Hy 000 1 Z z Z

[] []

® []

HZ000 z 0005 . .
HLO0O 9 1 HLO0O 6 [Z L
H8000 S l H¥000 S 1 | 1

syybry |o19ads | uaxol |‘ON 300y Jesn| | syubry ssaooy | uexol | g1 dnoug| |'ON '3190y Jasn [l dnouo

2|q0| U0 —3UNOIDY

3Sv8v.Iva SLHOKY SS3O0JV

a|qp| uao| —dnouH

2|qD| Jaquiapy —dnou9

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 150 of 172

U.S. Patent Aug. 24, 1999 Sheet 7 of 10 5,941,947

STEPS TAKEN BY SECURITY SERVER
IN RESPONSE TO ACCESS RIGHTS
QUERY FOR USER X

l / 702

ACCESS GROUP—-MEMBER TABLE
TO IDENTIFY GROUPS IN WHICH
USER X IS A MEMBER

l P

ACCESS GROUP—TOKEN TABLE
TO IDENTIFY CONTENT CATEGORIES TO
WHICH USER X HAS ACCESS BY VIRTUE
OF BEING IN THE GROUP/S IDENTIFIED
IN STEP 702, AND OBTAIN ACCESS
RIGHTS TO SUCH CONTENT CATEGORIES

l / 706

ACCESS ACCOUNT-TOKEN TABLE
TO OBTAIN ANY ADDITIONAL
RIGHTS THAT HAVE BEEN GIVEN
TO USER X

1 /’ 708

SORT TOKENS OF IDENTIFIED CONTENT
CATEGORIES IN ASCENDING
NUMERICAL ORDER

=

RETURN SORTED TOKENS AND
CORRESPONDING ACCESS RIGHTS
TO CALLING SERVER

FIG. 7

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 151 of 172

5,941,947

Sheet 8 of 10

Aug. 24, 1999

U.S. Patent

& I

/8. e F08

“N%

-GSt
r-- - -7 T .J_
_ 31901
I
|
P Qm uao | ~}uUNododY “
,
_
| 2901
“ wmﬂ uao| —dnouo __
I
_
_ 9|q0} |
4 Jaquis N —dnoug “
I

asoqp}od siybiy ssadoy

_
e o o e e e e

JaA19g AuNndas

10} sjybry ssadoy+4suariof
paJapJQ —A 0oL WNN

<

X J49s()
104 A1anp syybiy ssadoy

05—

-

10)uop adid | | JoyuoW Ny

saunjonss buiysni4 ayon)

00S Josn Joy
sjybiy sseooy puy suadol [00S Jesn

227 19s() 4oy
syybiy ssaooy puy suaXol || 22T 48sn

ayoo) siybiy sseody

(4aas05 Buyip) J2Y}Q 40)
I9AIRS BDIAIRS A40300.1(

Qt\\l\

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 152 of 172

5,941,947

Sheet 9 of 10

Aug. 24, 1999

U.S. Patent

66617 MOY

Z Moy

I Moy

& 9

T J9sM/suai0)l 005 ‘__
| |
| 66% 10IS Z 1018 I yors !
r
[J
o sJas)
o 000S
X Jos
HLO00'61 HLO00‘9L | H8000'GL | H¥000°GL | Josn v
ayoo) siybiy ssoaooy
/(N%

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 153 of 172

U.S. Patent Aug. 24, 1999 Sheet 10 of 10 5,941,947
@ccountRights(ussR X, TOKEN Y)
Y
7002
CACHE
CHECK CACHE
FOR USER’S oo

ACCOUNT NO.

HAS QUERY

CACHE THREAD BEEN

HIT STARTED
?

02~ QUERY
INITIATE BINARY THREAD
SEARCH OF CACHE
ROW FOR TOKEN Y] {J
TO0085
SLEEP
Ty 3

TOKEN NOT FOUND, BUT TOKEN NOT FOUND,
ROW IS NOT COMPLETE ~~ CHECK AND ROW IS COMPLETE
SEARCH

i RESULTS
SLEEP ?

\

RETURN CODE
INDICATING THAT

04

TOKEN

—
076 FOUND

CHECK ADJACENT

SLOTS IN CACHE

FOR DUPLICATE
TOKENS

]

RETURN 16—BIT /
ACCESS RIGHTS
VALUE OF USER X
TO TOKEN Y

FIG. 70

USER X CANNOT
ACCESS TOKEN Y

\/‘0 5

7020

_/

wozz

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 154 of 172

5.941.947

1

SYSTEM AND METHOD FOR
CONTROLLING ACCESS TO DATA
ENTITIES IN A COMPUTER NETWORK

FIELD OF THE INVENTION

The present invention relates to computer networks in
which access rights to data entities vary from user-to-user.
More particularly, the present invention relates to database
systems for storing access rights information.

BACKGROUND

The present invention is directed generally to the problem
of flexibly and efficiently controlling the access rights of a
large number of users to a large number of objects or other
data entities. The problem arises, for example. in the context
of on-line services networks in which end users are given
differing levels of access to different content entities. These
content entities represent the services or “content” of the
network, as seen by end users. The content entities may
include. for example, bulletin board messages, mail
messages, data files, folders, image files, sound files, mul-
timedia files, executable files, on-line services, connections
to other networks. etc. An on-line services network of this
type is described in copending U.S. Application Ser. No.
08/472.807 having the title ARCHITECTURE FOR SCAL-
ABLE ON-LINE SERVICES NETWORK. filed Jun. 7,
1995 (Now U.S. Pat. No. 5.774.668).

The need to assign user-specific access rights to different
content entities arises in a variety of situations. For example,
it may be desirable to give some users access to certain
“premium” services (such as specially-targeted investment
newsletters), while limiting others users to some basic set of
services. Further, it may be desirable to give certain users
{such as system operators or administrators) the ability to
modify, rename or delete certain content entities (such as
bulletin board messages). while limiting other users to
read-only access of such entities.

Various techniques are known in the art for controlling
user accesses to objects and other data entities. One
technique. which is commonly used in file systems, involves
the storage of an access control list (ACL) for each data
entity to which access is to be controlled. The ACL for a
given data entity will typically be in the form of a list of the
users that have access to the data entity. together with the
access rights of each such user with respect to the data entity.
Each time a user requests access to the entity, the data
entity’s ACL is searched to determine whether the requested
access is authorized. Another technique involves the storage
of a capabilities list for each user. The capabilities list for a
given user will typically include a list of the objects to which
the user has access, together with the operations that can be
performed by the user on each listed object. Both the ACL
technique and the capabilities list technique are described in
Silberschatz and Galvin. Operating System Concepts,
Fourth Edition, Addison-Wesley Publishing Company.
1994,

With the increasing popularity of on-line services
networks. and with the increasing need for such networks to
provide limited user access to the Internet. it has become
increasingly important to be able to provide large numbers
of users with controlled access to large numbers of content
entities. In the network described in the above-referenced
application, for example, it is contemplated that the number
of subscribers may be in the millions, and that the number
of content entities may be in the tens of thousands. To
provide flexibility. it is also desirable to be able to individu-
alize the access rights of users.

10

20

25

30

35

45

50

55

65

2

Although prior art access control techniques such as those
summarized above are suitable in theory for flexibly con-
trolling user access in large-scale on-line services networks,
these techniques tend to produce prohibitively large quan-
tities of access rights data. For example. in a network having
millions of users, the access control list technique might
produce access control lists that have millions of entries.
These large quantities of access rights consume large
amounts of memory. and often take unacceptably long
periods of time to search.

A need thus exists in the art for a technique that is suitable
for flexibly controlling the access of a large number of users
to a large number of data entities. A need also exists to be
able to flexibly and efficiently define new types of access
operations as new on-line services and new content entities
are created.

SUMMARY

In accordance with the present invention. there is pro-
vided a system and method for controlling user access to
data entities in a computer network. The data entities are
preferably in the form of content objects of an on-line
services network. although the system and method can be
used to control access to other types of data entities.

In a preferred implementation of an on-line services
network in which the present invention is embodied. the
content objects are stored on multiple application servers of
the network, and represent the on-line services and service
data that is accessible to users of the network. Examples of
content objects include bulletin board system (BBS) mes-
sages and folders. Chat conferences. download-and-run
files, and service applications which implement specific
on-line services. Users access these content objects by
connecting to different application servers and correspond-
ing services in the course of a logon session.

Service applications running on the application servers
implement various on-line services., such as Chat. Mail,
BBS. FTM (File Transfer Manager) and Mediaview. One
on-line service. referred to as the Directory Service. main-
tains a directory structure of the content objects that are
accessible to users, with the content objects forming nodes
of the tree-like directory structure. By sending properties of
these nodes to a client application running on the computer
of an end user, the Directory Service provides the user with
a hierarchical, navigable view of the content of the network.

In accordance with the invention. different users of the
network (including both subscribers and system
administrators) are given different access rights with respect
to different content objects. and can thus perform differing
types of operations with respect to the content objects. For
example, with respect to a given BBS folder. some users
may be prevented from seeing or otherwise accessing the
folder, some may be given read-only access to the contents
of the folder, some may be given the capability to create new
messages within the folder. and some may additionally be
given the capability to delete and/or rename messages within
the folder.

In accordance with one feature of the present invention,
the access rights of the users of the network with respect to
the various user-accessible content objects are specified by
access rights data that is stored within an access rights
database. The access rights database is implemented as a
relational database on one or more security servers. which
are connected to the application servers by a local area
network. The access rights data is stored within the rela-
tional database in association with multiple content category

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 155 of 172

5.941.947

3

identifiers. or “tokens.” which identify categories or group-
ings of content objects (such as “internal public data.”
“Internet public data.” and “18-and-older only data”) for
security purposes. The various content categories are pref-
erably defined by system administrators. The content
categories. rather than the content objects. serve the basic
content units to which user access rights may be specified.
The use of content categories eliminates the need to store
access rights data on a per-object basis, and thereby signifi-
cantly reduces the quantity of access rights data that needs
to be stored.

The access rights data is preferably stored within the
relational database in further association with multiple user
group identifiers. which identify user groups (such as
“everyone.” “allsysops.” and “guests”) that have been
formed for the purpose of storing access rights data. By
storing access rights data primarily on a per-user-group
basis. rather than separately storing the access rights of each
individual user. the use of user groups further reduces the
quantity of access rights data that needs to be stored.

The use of content categories and user groups advanta-
geously allows access rights to be specified for large num-
bers of users (typically millions) with respect to large
numbers of content objects (typically thousands) with a high
degree of granularity.

In accordance with another feature of the invention. the
service applications running on the various application serv-
ers initiate user-specific queries of the access rights database
to obtain access rights lists of specific users. With each
user-specific access rights query. the security server that
receives the query accesses the access rights database and
generates an access rights list which fully specifies the
access rights of the user. This access rights list is returned to
the application server that generated the query. and is stored
within an access rights cache of the application server. The
service which initiated the query can then rapidly determine
the of access rights of the user with respect to specific
content objects (as described below) by accessing its locally-
stored copy of the user’s access rights list. Because a user
may be connected simultaneously to multiple application
servers of the on-line services network (when. for example,
the user opens multiple services), the access rights list of a
given user may be stored concurrently within the respective
caches of muitiple application servers.

In accordance another feature of the invention, the access
rights list of each user includes pairs of tokens and corre-
sponding access rights values. Each token in the list iden-
tifies a content category to which the user has at least some
access rights. For example, atoken of “5” in the list indicates
that the user has access to all content objects which fall
within content category 5. Each access rights value in the list
specifies the access rights of the user with respect to a
corresponding content category. The access rights values are
preferably in the form of privilege level masks which
specify one or more general privilege levels (such as
“viewer.” “user,” “host.” “sysop.” and “supersysop”). These
general privilege levels are translated into specific sets of
access capabilities by the on-line service applications. For
example. the BBS service may give users with sysop-level
privileges the capability to delete and rename BBS mes-
sages.

In accordance with another feature of the invention. when
it becomes necessary for a service (running on an applica-
tion server) to determine the access rights of a user with
respect to a specific content object. the service initially reads
the object’s token. which is preferably stored as a property

6

20

25

30

35

40

45

50

55

65

4

of a corresponding Directory Service node. This token
specifies the content category to which the content object
belongs. The service then generates an API (application
program interface) call. which causes the application server
to search its access rights cache for the user’s access rights
list, and if found. to search the access rights list for the token.
If the user’s access rights list is not found. the API initially
generates a query of the access rights database (to fill the
cache with the user’s access rights list), and then begins to
search the cache for the token. If the token is found, the API
returns the corresponding access rights value to the service
that generated the API call. If the token is not found. the API
returns a code indicating that the user cannot access the
content object.

In accordance with yet another feature of the present
invention, the relational. access rights database includes
three tables. The first table is a group-member table which
specifies the user groups and the members (i.e.. user
accounts) of each user group. Each user of the network is a
member of at least one user group, and may be a member of
multiple groups. The second table is a group-token table
which contains, for each user group. a group-based access
rights list (in the form of a list of tokens and corresponding
access rights values). Each group-based access rights list
specifies the group-based rights which are provided to all
members of the respective group. The third table is an
account-token table, which specifies. on a single-user basis
(for certain users), additional rights that are to be added to
the group-based rights of the user. Each user-specific entry
in the account-token table is preferably in the form of a
single token plus a corresponding access rights value.

In addition to (or in place of) the account-token table. an
exclusion table may optionally be implemented to specify
access rights that are to be taken away from the accounts of
specific users. As with the account-token table. each user-
specific entry in the exclusion table is preferably in the form
of a single token plus a corresponding access rights value.
The exclusion table is useful, for example. for taking away
certain privileges of users who misuse certain services.

Upon receiving a user-specific access rights query. the
security server initially accesses the group-member table to
identify all user groups of which the specified user is a
member. The security server then accesses the group-token
table to obtain the group-based access rights list of each user
group of which the user is a member. The security server
thereby identifies all of the rights the user has by virtue of
being a member of one or more user groups. If the user is a
member of multiple user groups, the multiple group-based
access rights lists are combined so that the user is given all
of the rights associated with all user groups of which the user
is a member. The security server then accesses the account-
token table to determine whether any additional (or
*special™) rights (in the form of tokens and corresponding
access rights values) have been added to the account of the
user. If one or more entries exist in the account-token table
for the user, these entries are combined with the user’s
group-based rights to generate the user’s access rights list.
(For embodiments that include an exclusion table, if one or
more entries exist for the user in the exclusion table. these
entries are subtracted from the user’s group-based rights.)
The access rights list is then sorted such that the tokens of
the list (and corresponding access rights values) are placed
in numerically ascending order (to facilitate cache searches
of the list), and the sorted list is transmitted to the application
server that generated the query.

The system and method of the present invention advan-
tageously enabled system administrators to flexibly control

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 156 of 172

5.941.947

5

user access to different “service areas” in order to achieve a
variety of objectives. In accordance with a preferred mode
of operation. when a new service area (preferably repre-
sented by one or more nodes of the directory structure) is
created. a security token may be assigned to the new service
area to provide separate security for the area. A particular
user. who may be either a subscriber to the network or a
system administrator. may then be given sysop-type privi-
leges (via the above-mentioned account-token table) to the
new service area. By making different users sysops with
respect to different service areas. the responsibility of moni-
toring user-generated content is distributed among many
different individuals. In accordance with another preferred
mode of operation. content categories and user groups are
formed so as to create many different communications
forums (such as Chat conferences and BBS folders) for
private correspondence among user-specified subgroups of
users.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features of the invention will now be
described with reference to the drawings of a preferred
embodiment, which is intended to illustrate and not to limit
the invention, and in which:

FIG. 1 is a high level diagram illustrating the general
architecture of an on-line services network which provides
access control in accordance with the present invention.

FIG. 2 illustrates how the content of the on-line services
network of FIG. 1 is preferably arranged within a tree-like
directory structure of content nodes.

FIG. 3A illustrates an access control matrix which
specifies, for each user and for each node of the directory
structure of FIG. 2. whether the user can access the node,
and if so, what the level of access is. The notation “X33(X”
in FIG. 3A represents a 16-bit access rights value.

FIG. 3B illustrates a preferred basic set of privilege levels,
and illustrates one possible assignment of access rights bits
to the privilege levels.

FIG. 4A illustrates how the access control matrix of FIG.
3A is preferably compressed horizontally by the assignment
of content nodes to content categories, with each content
category identified by a numerical security token.

FIG. 4B is a token definition table which illustrates a
preferred basic set of security tokens (tokens 1-4). and
which illustrates examples of tokens (tokens 100 and 101)
which may be added to accommodate specific data types.

FIG. 5A illustrates how the access control matrix of FIG.
3A is compressed vertically by the assignment of users to
user groups.

FIGS. 5B is a group definition table which shows a
preferred basic set of user groups. and which illustrates one
possible assignment of group IDs to user groups.

FIG. 6 illustrates a preferred relational database which is
used to store access rights data in accordance with the
present invention. Numerical values in FIG. 6 are examples
of possible table entries.

FIG. 7 illustrates a sequence of steps taken by one of the
security servers of FIG. 1 when a database query is made for
the access rights of a specific user.

FIG. 8 illustrates the preferred process by which one
application server queries a security server for the access
rights of a specific user and then caches the access rights
data returned by the security server. Also shown in FIG. 8
are the basic structures used for flushing user-specific rows
of the cache.

10

15

20

25

30

35

40

45

50

55

65

6

FIG. 9 illustrates a preferred arrangement of the cache of
FIG. 8. Numerical values in FIG. 9 correspond to the
example table entries of FIG. 6.

FIG. 10 illustrates a sequence of steps taken by an
application server to determine the access rights of a specific
user (“user X*) with respect to a specific token (“token Y™).

Reference numbers in the drawings have three or more
digits; the two least significant digits are reference numbers
within the drawing. and the more significant digits indicate
the figure in which the item first appears. For example,
reference number 602 refers to an item which is first shown
in FIG. 6. Like reference numbers indicate like or function-
ally similar components.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

Described herein is a system and method for controlling
the access rights of users of an on-line services network to
content entities such as bulletin board messages, message
folders. chat conferences, service applications. download-
and-run files and data files. As will be recognized by those
skilled in the art, the system and method of the present
invention are generally independent of the specific type or
types of data entities to which access is being controlled. For
example, the data entities could be low-level software and/or
hardware resources such as threads, semaphores. memory
segments and CPUs. It will further be recognized that the
system and method of the present invention could be
employed in any of variety of alternative networking
environments. including file systems and operating systems.

For convenience, the description of the preferred embodi-
ment is broken up into the following 12 sections:

1. ARCHITECTURAL OVERVIEW (FIG. 1);

2. OVERVIEW OF CHAT AND BBS SERVICES;

3. OVERVIEW OF DIRECTORY SERVICE AND SECU-
RITY (FIG. 2);

4. ACCESS RIGHTS (FIGS. 3A AND 3B);

5. COMPRESSION BY GROUPING OF OBJECTS (FIGS.
4A AND 4B);

6. COMPRESSION BY GROUPING OF USERS
(FIGURES 5A AND 5B); |

7. ACCESS RIGHTS DATABASE (FIG. 6);

8. QUERIES OF ACCESS RIGHTS DATABASE (FIGS. 7
AND 8);

9. ACCESS RIGHTS CACHE (FIG. 9):

10. GetAccountRights METHOD (FIG. 10);

11. ASSIGNMENT OF TOKENS AND FORMATION OF
USER GROUPS; and

12. OTHER EMBODIMENTS

The first of these sections provides an overview of the
on-line services network in which the present invention is
employed. The architecture of this network is further
described in the above-referenced, commonly assigned
application having the title “ARCHITECTURE FOR
SCALABLE ON-LINE SERVICES NETWORK” (U.S. Ser.
No. 08/472.807), which is incorporated herein in by refer-
ence.

1. Architectural Overview (FIG. 1)

FIG. 1 is a high level diagram illustrating the general
architecture of an on-line services network 100 which pro-
vides access control in accordance with the present inven-
tion. Multiple client microcomputers 102 are connected to a
host data center 104 by a wide area network (WAN) 106.
The wide area network 106 includes WAN lines 108 which

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 157 of 172

5.941.947

7

are provided by one or more telecommunications providers.
and which allow end users (i.e.. users of the microcomputers
102) over a wide geographic area to access the host data
center 104. The WAN lines 108 may include, for example.
X.25 lines, TCP/IP lines. and ISDN (Integrated Service
Digital Network) lines. The host data center 104 provides a
variety of information-related and communications-related
on-line services to end users.

The host data center 104 comprises a plurality of appli-
cation servers 120 connected to one or more high speed local
area networks (LAN) 122. The application servers 120 are
preferably Pentium-class (or better) microcomputers which
are scalable to at least four central processing units (CPUS),
and which run the Microsoft Windows NT operating system
available from Microsoft Corporation. Each application
server 120 typically has at least 128 MB of random-access
memory {(RAM) and at least 4 GB of disk space.

The application servers 120 are arranged into service
groups (also referred to as “AppGroups”) that correspond to
specific on-line services. Each service group runs a particu-
lar service and provides access to a corresponding data set.
Three example service groups are shown in FIG. 1: a CHAT
service group 130. a bulletin board system (BBS) service
group 132, and a DirSrv service group 134, Additional
service groups (not shown) are provided to implement other
on-line services. including Mediaview (a service which
provides multimedia titles to end users). Mail (an email
service). FTM (a service for uploading and downloading
files) and Component Manager (a service which allows users
to update client software when new releases become
available). Other on-line services may include, for example,
an interactive games service, a file transfer service, a
weather service, and a World Wide Web browsing service. A
service group can have as few as one application server 120.
System administrators can adjust the number of application
servers 120 in a given service group to accommodate the
current usage level of the corresponding service.

Also connected to the LAN 122 are multiple Gateway
microcomputers 140 (hereinafter “Gateways”) which link
incoming calls from end users to the application servers 120.
The Gateways are preferably Pentium-class microcomputers
which are scalable to at least four central processing units
(CPUs). and which run the Microsoft Windows NT operat-
ing system. Each Gateway 140 typically has at ieast 64 MB
of RAM and at least 2 GB of disk space. and is capable of
supporting approximately 1000 simultaneous user connec-
tions.

Also connected to the LAN 122 are multiple security
servers 150. The security servers 150 are preferably
Pentium-class microcomputers which are scalable to at least
four central processing units (CPUs), and which run the
Microsoft Windows NT operating system. Each security
server 150 maintains a relational database 152 (ie.. a
database in which the contents are organized as a set of two
or more interrelated tables) which contains the access rights
data for all users of the network 100. In the preferred
embodiment. the security servers 150 are replicated, mean-
ing that they store and provide access to the same access
rights data. In other embodiments, the access rights data may
be partitioned across the security servers 150.

Each security server 150 runs Structured Query Language
(SQL) code to provide access to its respective access rights
database 152. SQL is a programming language standardized
by the International Standards Organization (ISO) for
defining, updating and querying relational databases. A
query to the access rights database 152 can emanate cither
from one of the application servers 120 (when, for example,

10

15

20

25

30

35

40

45

50

55

65

8

a user attempts to access a content object which is stored by
the application server 120). or by one of the Gateways 140
(when a user attempts to open an on-line service). In
accordance with one feature of the present invention. each
machine 120. 140 which generates queries of the access
rights database 152 implements an access rights cache for
locally storing user-specific access rights information
obtained from the database 152. In other embodiments, all
access rights queries may be generated by a single group or
type of machine (e.g.. the Gateways 140. or a group of logon
servers). and these machines may be configured to pass the
user-specific access rights information read from the data-
base 152 to the various application servers 120 to which the
user connects.

Various other types of servers and other microcomputers
are connected to the LAN 122 but are not shown in FIG. 1.
For example. billing and logon servers are provided to
record billable events and to handle user logon, respectively.
Further, Arbiter microcomputers are provided to perform
transaction replication services for certain service groups,
allowing the application servers of such service groups to
store identical copies of the same service content data.

It is envisioned that the host data center 104 may have on
the order of one hundred Gateways 140, and between several
hundred and several thousand application servers 120. A
host data center of this type will be able to handle millions
of subscribers and tens of thousands of simultaneous user
logon sessions. Advantageously. the processing capacity of
the host data center 104 can easily be increased (to support
new services, and to support increases in the number of
subscribers) by connecting additional Gateways 140 and
application servers 120 to the LAN 122, and by adding
additional local area networks. Further, additional host data
centers 104 can be provided at different geographical loca-
tions to accommodate a wide geographic distribution of
subscribers.

“Users” of the on-line services network 100 include both
“end users” (typically subscribers) who log onto the system
from client microcomputers 102 via the WAN 106. and
“internal” users (typically system administrators) who
access the system from computers that are connected
directly to the LAN 122. Each user of the network, whether
an end user or an internal user, is identified by a unique
32-bit account number. As described below, different users
have different access privileges with respect to various data
entities on the network.

The on-line services offered to end-users of the network
100 are in the form of client-server applications programs
(or “service applications™). Each service application
includes a server portion that runs on one or more of the
application servers 120, and at least one comresponding
client portion (also referred to as a “client application™) that
runs on a microcomputer 102 of an end user. In the presently
preferred embodiment. the client applications are in the form
of Microsoft Windows 95 components (including dynamic
link libraries. other executables. and data files), and the
server portions are implemented primarily as dynamic link
libraries running under the Microsoft Windows NT Operat-
ing System.

With reference to FIG. 1. the server portions of the various
on-line services are implemented on the application servers
120 of the respective service groups 130, 132, 134. Each
application server 120 of a given service group separately
runs the same server application. For example. each appli-
cation server 120 of the Chat service group 130 rums
CHAT.DLL. which is a dynamic link library that implements
the server portion of the Chat service. Similarly, each

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 158 of 172

5.941.947

9

application server 120 of the BBS service group 132 runs a
BBS dynamic link library. and each application server 120
of the DirSrv service group 134 runs a DirSrv dynamic link
library. Although each application server 120 is shown in
FIG. 1 as being allocated to a single service group, a single
application server can simultaneously run multiple service
applications, and thus be allocated to multiple service
groups. For example. a single application server 120 could
run both the Chat and BBS dynamic link libraries and thus
be allocated to both the Chat and BBS service groups 130,
132.

During a typical logon session. a client microcomputer
102 will maintain a communications link with a single
Gateway 140, but may access multiple on-line services (and
thus communicate with multiple application servers 120). To
initially access a service., an “open” request is generated on
the client microcomputer 102 and sent to the Gateway 140
that is handling the logon session. The Gateway 140 then
selects a single application server 120 (of the appropriate
service group) to handle the service session. and opens a
pipe (or other type of connection) over the LAN 122 to the
selected application server 120.

Throughout the service session, the Gateway 140 routes
messages between the client microcomputer 102 and the
application server 120 as the client and server portions of the
service application communicate. The Gateway 140 also
performs protocol translation between the protocol of the
WAN 106 and the protocol of the LAN 122. To terminate the
service session. a “close” request is generated at the client
microcomputer 102 and sent to the Gateway 140, and the
Gateway 140 closes the pipe to the application server 120
that is handling the service session.

The architecture advantageously supports multiple simul-
taneous service sessions per user. Thus. a user may be
connected to multiple applications servers (via the Gateway
140 handling the logon session) simultaneously.

2. Overview of Chat and BBS Services

Two specific on-line services, Chat and BBS. will now be
briefly described. This description will illustrate some of the
specific types of content entities (referred to herein as
“content objects.” or simply “objects”) which may be
accessed by users, and will also illustrate some of the
different types of access rights users may be given with
respect to such content objects.

The Chat service is an interactive communications service
which allows users to have real time conversations with
other users on specific topics. Chat conversations or “con-
ferences” are organized as “Chat rooms” which may be
entered or exited by end users to join or leave the corre-
sponding conferences. For example. an end user may enter
a “sports” Chat room to join an interactive conversation on
sports-related topics. Participants in a Chat conference can
type in textual messages which will be displayed on the
monitors of other participants. Voice and/or video capabili-
ties may additionally be provided.

The BBS service allows users to post and/or review
messages. Users can thereby ask and answer questions. or
otherwise conduct non-real-time conversations with other
users. Although shown as a single BBS service group 132 in
FIG. 1. multiple BBS service groups may be formed, with
each corresponding. for example. to a particular topical area.
In the preferred implementation, replicated copies of all
BBS content (e.g.. BBS messages and folders) are stored on
each application server 120 of the BBS service group 132.
This allows the BBS application servers 120 to indepen-
dently process message read requests from end users. Rep-
lication of BBS content is accomplished using the Arbiter

10

15

20

25

30

35

45

50

55

65

10

transaction replication service. A preferred embodiment of
the Arbiter service is described in commonly assigned U.S.
application Ser. No. 08/485.493. filed Jun. 7. 1995. having
the title TRANSACTION REPLICATION SYSTEM AND
METHOD FOR SUPPORTING REPLICATED
TRANSACTION-BASED SERVICES.

With reference to FIG. 1, one of the application servers
120 of the BBS service group 132 is preferably configured
as an Internet feed server 120. The BBS Internet feed server
120 reads Internet newsgroup messages and posts these
messages (by submitting update transactions to the Arbiter
service) within the BBS service group 132. thereby provid-
ing users with access to such newsgroup messages. The BBS
Internet feed server 120 is also used to post messages to the
Internet.

Chat rooms and BBS messages are two types of content
objects that may be accessed by users. BBS folders (objects
which contain BBS messages and/or other BBS folders) are
another type of content object that may be accessed.

The ability to access a given content object. and the access
rights of the user with respect to that object, may vary from
user to user. Using a Chat room object as an example. some
users may be ‘“participants” who can participate in the
conference. while other users may be “viewers” who can
only view the text of the conversation. One user may further
be designated as the “host” of the conversation. The host
normally has the responsibility of moderating the
conversation. and has the ability to modify the access rights
of members of the conversation. For example. if a user fails
to comply with the rules of the Chat conference, the host can
set that user’s privilege level to “viewer.” preventing the
user from further participating in the conversation. Access
rights of users are preferably controlled (typically by system
operators or administrators) by updating entries in the access
rights database 152, as described in detail in the following
sections.

As with Chat objects. the access rights of users with
respect to different BBS objects (e.g.. BBS folders and
messages) may vary from user to user. For example. certain
BBS folders may be designated as “public.” meaning that
they can generally be accessed by all users, while other BBS
folders may be designated as “private.” meaning that access
to such folders is restricted to some subgroup of users. A
private folder may be used, for example. to permit private
personal correspondence between a user-specified group of
family and friends.

The specific types of operations allowed with respect to a
BBS object may vary from user to user. For example. some
users may have read-only access within a BBS folder. in
which case they will not be able to reply to an existing BBS
message in that folder and will not be able add a new
message to the folder. Other users may be able to add new
BBS messages to the folder and/or reply to existing
messages. but not delete existing messages.

Other users, generally referred to as “sysops” (system
operators), may be given the ability to delete existing
messages from the folder. Different end users can be des-
ignated by the on-line services network provider (i.e.. the
owner or operator of the host data center 104) as the sysop
for a particular folder or group of folders. Thus. for example.
a particular end user may be placed in charge of a football
BBS folder. while another end user may be placed in charge
of a baseball BBS folder. This advantageously allows the
on-line services network provider to distribute the respon-
sibility of monitoring BBS content among a large number of
end users.

Users at the system administrator level may be given the
additional capability of creating new BBS folders. deleting

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 159 of 172

5.941.947

11

existing BBS folders. and/or changing the access rights of
users with respect to BBS folders.

The foregoing examples illustrate some of the specific
types of access privilege levels which may be assigned to
users with respect to certain object types. and illustrate some
of the reasons for assigning different levels of access rights.
As additionally illustrated by the foregoing. it is often
desirable to define different (and often unique) types of
accesses for different on-line services and object types. For
example, for the Chat service, it is desirable to have the
above-described viewer, participant and moderator type
access privileges, even though the operations corresponding
to these privileges are generally unique to the Chat service.

It will also be recognized that as new on-line services and
new object types are added to the network 100, it may be
necessary or desirable to define new types of access opera-
tions. To facilitate the addition of new on-line services and
object types. the network 100 provides for a specified set of
privilege levels (such as “viewer,” “observer.,” “user,”
“host.” “sysop.” and “sysop manager”) which can be
assigned to users, and it is left to the on-line services
themselves (i.e.. to the authors of the service applications) to
define the specific access capabilities that go along with each
user privilege level. For example, for a user that has been
assigned the general privilege level of “user,” the Chat
service may give the user “participant™ level access to all
public Chat rooms. while the BBS service may allow the
user to read. generate and reply to BBS messages within all
public BBS folders. This feature of the present invention is
further described below under the heading ACCESS
RIGHTS.

3. Overview of Directory Service and Security (FIG. 2)

The following is an overview of the Directory Service.
which is an on-line service that allows users to explore the
content (i.e.. the on-line services and associated data
entities) of the network 100. The Directory Service is
described in detail in a concurrently filed U.S. application
having the titte DIRECTORY SERVICE FOR A COM-
PUTER NETWORK., which is incorporated herein by ref-
erence. Included in this overview is a brief description of
how the Directory Service and other services determine the
access rights of users with respect to specific content objects.

The Directory Service provides users with a hierarchical
view of the various content objects available on the network
100. As further described below, the content objects are
arranged within hierarchical directory structures 202, 204
(FIG. 2) that are maintained by the Directory Service. with
the content of the content objects represented as nodes of
these structures 202. 204.

The content of the network 100 is displayed to the end
user via a network shell program which runs on the client
microcomputers 102 of end users. The network shell is the
primary client of the Directory Service. A preferred imple-
mentation of the network shell is described in a commonly-
assigned U.S. application having the title ON-LINE NET-
WORK ACCESS SYSTEM. filed Jul. 17, 1995. In the
preferred embodiment, the network shell is an integral part
of the Microsoft Windows 95 Explorer program (hereinafter
“the Explorer”) which is described in fnside WindowsS5.
Microsoft Press. 1994.

A graphical user interface of the Explorer displays the
content objects as a logical extension of the user’s hard
drive, with each object shown as an icon and/or a textual
name. Using the Explorer. users can browse the content of
the network 100, and can access the various content objects
(to, for example. enter a specific on-line service). To access
a content object, the user double clicks on the icon for that

10

15

20

25

30

35

40

45

50

55

65

12

object. As further described below, the Directory Service
only “shows” those content objects to which the particular
user has access. Thus, the user is provided with a filtered
view of the actual content of the network 100.

With reference to FIG. 1, the Directory Service
(abbreviated as “DS” in FIG. 1) includes two separate
services, the DirSrv service (implemented on the DirSrv
service group 134) and the BBS service (implemented on the
BBS service group 132). The DirSrv service is the “root” of
the Directory Service, and provides users with a
hierarchical, navigable view of all non-BBS content objects.
These non-BBS content objects are arranged within the
DirSrv directory structure 202. The BBS service acts as its
own directory service provider, and provides users with a
navigable, hierarchical view of all BBS content objects. The
BBS content objects are arranged within the BBS directory
structure 204. A seamless interface between the DirSrv and
BBS services allows users to transparently traverse between
the two directory structures 202, 204. so that the Directory
Service appears as a single service to end users, and so that
the two directory structures 202, 204 appear as a single
tree-like directory structure.

The DirSrv and BBS services are both “directory service
providers.” meaning that they act as the Directory Service
with respect to comresponding portions of the network con-
tent. Additional directory service providers can be added to
the Directory Service as the content of the network 100
grows. For example. an investment service that provides
data on stocks and mutual funds could be added which acts
as a directory service provider with respect to its own
content.

FIG. 2 illustrates the general organization of the content
objects within the directory structures 202 and 204, as
maintained by the Directory Service. Each content object is
represented as a corresponding node of one of the directory
structures 202, 204. The first directory structure 202 exists
within the DirSrv namespace 212. and represents the content
that is accessible through the DirSrv service. The second
hierarchical structure 204 exists within the BBS namespace
214. and represents the content that is accessible through the
BBS service. Each structure 202, 204 may have thousands of
nodes. and could thus represent thousands of content
objects. The nodes can generally be thought of as “service
areas” that can be entered by users. Links between nodes
represent paths that can be taken by users in traversing the
hierarchical structures 202. 204 from one service area to
another. The specific nodes and links shown in FIG. 2 are
provided to show the general manner in which nodes are
arranged. and do not represent an existing directory struc-
ture.

The hierarchical directory structures 202, 204 are prefer-
ably in the form of directed acyclic graphs. As is well known
in the art of file systems. an acyclic graph structure is more
flexible than a tree structure. since an acyclic graph allows
a node to have multiple parent nodes. (A “parent” of a given
node is any node that is both (1) directly connected to the
given node. and (2) at a higher level in the hierarchy than the
given node. Similarly, a “child” is any node that is both (1)
directly connected to the given node, and (2) at a lower level
than the given node.) This characteristic of the directory
structures 202 and 204 is illustrated by nodes 10 and 17,
each of which has two parent nodes. To simplify the fol-
lowing description. the term “Directory Service structure”
will be used to refer collectively to the DirSrv and BBS
directory structures 202 and 204.

There are three different types of nodes within the Direc-
tory Service structure: leaves, folders and junction points. A

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 160 of 172

5.941.947

13

set of flags stored in association with each node identifies the
node as one of these three types. Leaves (or “leaf nodes™) are
nodes that both (1) cannot have children and (2) do not serve
as junction points. The leaf nodes in FIG. 2 are nodes 7-11.
16 and 17 (assuming that these nodes cannot have children).
Leaves normally represent the actual services within net-
work 100. Examples of leaves include Chat rooms. BBS
messages. Mediaview titles and download-and-run files.
When the user clicks on a leaf node (by double clicking on
the corresponding icon from a window of the Explorer
client), the corresponding service-related action is taken. For
example, if the user double clicks on a Chat room icon. the
Chat service is opened and the user is added to the corre-
sponding Chat conference. When the user double clicks on
a leaf node for a download-and-run file, the file is down-
loaded to the user’s computer 102 for execution.

Folders are nodes that both (1) can have children and (2)
do not serve as junction points. The folder nodes in FIG. 2
are nodes 0-6 and 13-15. Folder nodes normally represent
collections of other content objects. and are used to organize
the content of the network. For example. a folder node may
correspond to a BBS folder on a particular topic. or may
represent a collection of BBS folders and Chat rooms on a
related topic. Folder nodes are also used to generally arrange
content objects according to language. For example. node 1
may be an english folder containing content objects that are
primarily in english. and node 2 may be a spanish folder
containing content objects that are primarily in spanish.
Folder nodes are generally analogous to the directories of a
file system.

The third type of node is a junction point. Junction point
nodes serve as proxies for nodes in other Directory Service
namespaces, and are used to allow the user to scamlessly
traverse between namespaces. The only junction point
shown in Figure is node 12. which serves as a proxy for BBS
folder node 14 (referred to as the “target node™). When. for
example. the user double clicks on node 12, the Explorer
launches a BBS navigator and shows the user the children of
node 14.

The Dirsrv and BBS services store their respective nodes
as lists of node properties, as illustratively shown for node
8 in FIG. 2. The DirSrv and BBS service also keep track of
the locations of the nodes within their respective directory
structures 202, 204. As pictorially illustrated in FIG. 1. the
full DirSrv directory structure 202 (i.e.. the nodes within the
DirSrv namespace 212 plus the arrangement of the nodes
within the directed acyclic graph) is stored on cach of the
application servers 120 of the DirSrv service group 134.
Similarly. the full BBS directory structure 204 is stored on
each of the application servers 120 of the BBS service group
132. Depending upon the object type. certain of the node
properties stored by the Directory Service may be service-
specific. For example, BBS message nodes preferably
include a BBS-specific “attachments flag” which indicates
whether a file attachment is included with the message.
Other properties are general in nature. and are shared by
most or all of the Directory Service nodes. The following is
a brief description of some of these general properties.

Name. This is a human readable name which may be

displayed by the Explorer along with the corresponding
icon. For example, a folder node could have the name
“Health & Fitness,” and could have children folder
nodes with names of “Health & Fitness Chat” and
“Heath & Fitness BBS.” (For junction point nodes. the
name of the target node is used).

Directory Entry ID (DEID). This is an 8-byte number

which uniquely identifies a node within its respective
Directory Service namespace. Every node has a DEID.

15

20

25

30

35

45

50

55

65

14

Application ID (APPID). This is a 4-byte number which
is stored as a property of every node. For leaf nodes.
this number identifies the service application associated
with the node. and is used by the Explorer to launch the
service application when the user double-clicks on the
node. For non-leaf nodes, the APPID indicates the
namespace (DirSrv or BBS) in which the node resides.

Service Group ID. (Also referred to as the data set ID.)
This is a 2-byte number which identifies the service
group (132 or 134) of the Directory Service provider.

Icon ID. This is an identifier of the icon which is to be
displayed by the Explorer as a representation of the
node. Icon bitmaps are stored by the Directory Service,
and are sent over the network upon request by the
Explorer.

Flags. The flags indicate whether the node is a folder, leaf.
or junction point.

Security Token. This is a 4-byte value which identifies a
content category to which the node has been assigned
for security (i.e.. access rights) purposes. When a user
attempts to access a node. the node’s security token and
the user’s 32-bit account number are used to determine
the user’s access rights with respect to the node. (For
junction point nodes. the security token of the target
node is used). Security tokens are described in detail
below under the heading COMPRESSION BY
GROUPING OF OBJECTS.

Although the terms “node” and “content object” will be
used somewhat interchangeably throughout the following
description. it should be understood that each node is simply
a list of content object properties stored by the Directory
Service. In the case of a leaf node. this list of properties will
typically correspond to a content object which is stored on
some other application server 120. For a Chat room object
which resides on a Chat server 120, for example, the
cormresponding node will be a list of the properties for the
Chat room. and will be stored on each of the DirSrv servers
120. For folder nodes which simply represent groupings of
other nodes, the folder node and folder content object are
essentially the same entity.

Nodes of the Directory Service structure are preferably
added. deleted and modified using “Sysop Tools.” which is
a client application of the Directory Service. As will be
appreciated by those skilled in the art. various conventional
editing tools can be used for this purpose. To create a node
using Sysop Tools. the user must specify at least the DEID.
APPID and the service group ID of the node. The Sysop
Tools client is further described in a commonly-assigned.
concurrently filed U.S. application having the title SYSTEM
AND METHOD FOR EDITING CONTENT IN AN
ON-LINE NETWORK.

The Directory Service operates generally as follows. In
response to requests from the Explorer, the Directory Ser-
vice sends node properties over the WAN 106 to the client
microcomputer 102, allowing the Explorer to reconstruct
user-selected portions of the Directory Service structure on
the user’s screen. and/or allowing the Explorer to display
user-specified object properties (such as the number of users
in a Chat room) to the end user. To avoid unnecessary
transfers of information over the WAN 106, the Directory
Service only returns those properties that are specifically
requested by the Explorer. When the user double clicks on
a folder node. the Explorer uses a GetChildren API
{application program interface) to generate a request to the
Directory Service for the children of the folder node. speci-
fying as parameters of the API the DEID of the folder node
plus the names of the specific properties needed to display

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 161 of 172

5.941.947

15

the children of the folder node. When the user double clicks
on a leaf node, the Explorer initiates a service session with
the corresponding service, using the leaf node’s APPID to
identify the appropriate service application.

Before “showing” a node to the end user (by returning the
requested properties of the node to the Explorer), the Direc-
tory Service uses a GetAccountRights API to determine the
access rights of the user with respect to the node (or
equivalently. with respect to the corresponding content
object). and to thereby determine whether the user is autho-
rized to access the node. This access rights information is
stored within the access rights database 152 on each security
server 150. If the user is not authorized to access the node,
the Directory Service does not return the properties of the
node, and the node is not displayed to the user. By way of
example, suppose that a user double clicks on the icon
corresponding to node 6 in FIG. 2. This will cause the
Explorer to send a GetChildren request to the Directory
Service. As parameters of the GetChildren request. the
Explorer specifies the DEID of node 6. and specifies the
properties (typically the name, DEID. APPID, flags and icon
ID) to be returned for each child node. If. for example. the
user is authorized to access node 7. but is not authorized to
access node 8. the Directory Service will return only the
properties of node 7. Thus. node 8 will not appear in the
Explorer window on the user’s screen.

This feature of the invention advantageously allows cer-
tain nodes and content objects to be completely hidden from
certain classes of users. For example, this feature may be
used to hide from the view of regular users a BBS folder
(and its contents) that has been created for private corre-
spondence between members of a family. so that the only
users who can see the folder (via the Explorer or other client
application) are the designated family members. Because
only those authorized to access each node can see the node.
a high degree of security is provided against unauthorized
accesses.

To determine the user's access rights with respect to the
node, the Directory Service initially reads the 32-bit security
token associated with the node (which, as described above,
is stored as a node property). The Directory Service then
generates a GetAccountRights call. specifying as parameters
of the call the node’s security token and the user’s 32-bit
account number. The GetAccountRights API returns either a
16-bit access rights value which indicates the user’s access
rights with respect to the node., or else returns a code
indicating that the user is not authorized to access the node.
The GetAccountRights API includes code which generates
queries to the access rights databases 152 to obtain user-
specific access rights lists, and also includes code which
implements an access rights cache for locally storing these
user-specific lists. The GetAccountRights API and a pre-
ferred implementation of the access rights cache are
described in detail in sections 8-10 below.

In the preferred implementation of the network 100,
various forms of “direct navigation” are possible. wherein
the user can access content objects without initially placing
a Directory Service call. Using a “shortcuts” feature, for
example. a user can create an icon that allows the user to
subsequently return to a service area (such as a Chat room)
without navigating the Directory Service structure. (The
shortcuts feature is described in the above-referenced appli-
cation of the title ON-LINE NETWORK ACCESS
SYSTEM.) The Directory Service thus cannot be relied
upon for ensuring the security of all content objects.

To ensure that the access rights of users are checked when
direct navigation techniques are used. various other entities

10

15

20

25

30

35

45

50

55

65

16

of the network 100 (in addition to the Directory Service) are
preferably configured to call the GetAccountRights API. For
example, the Chat service calls GetAccountRights to deter-
mine the rights of users with respect to Chat rooms, the Mail
service calls GetAccountRights to determine whether users
are authorized to send mail to specific distribution lists, and
the FTM service calls GetAccountRights before download-
ing a file requested by a user. To provide an extra “layer” of
protection, the Gateways 140 are preferably configured to
call GetAccountRights whenever a user attempts to open a
pipe to a service (as described below).

Although the architecture of the preferred embodiment
allows a wide variety of different services and machines to
generate queries of the access rights database 152. it will be
recognized that various alternatives are possible. For
example, the network 100 may be configured such that the
Directory Service is the only entity that generates queries of
the access rights database 152, and all access requests may
then be routed through the Directory Service. Alternatively.
the Gateways 140 or logon servers (not shown) could be
configured to generate a query of the access rights database
152 when a user initially logs onto the network. and the
user-specific access rights list obtained from this query may
then be forwarded to each application server 120 to which
the user connects. Both of these alternative approaches
reduce the frequency of queries of the access rights database
152.

4. Access Rights (FIGS. 3A and 3B)

FIG. 3A illustrates an access control matrix 300 which
represents the access rights of users of the on-line services
network 100. The information contained within the access
control matrix 3040 is stored in the access rights database 152
in a highly compressed form. Accordingly. the access con-
trol matrix 300 represents the information stored within the
access rights database 152, but does not represent the actual
organization of this information within the database. The
preferred methods used for compressing the access control
matrix 300, and the preferred implementation of the data-
base 152, are described in the following sections. As
described below, the access control matrix 300 (and thus the
access rights database 152) specifies, for each user of the
network, both (1) the content nodes that can be seen by the
user via the Directory Service, and (2) the access operations
that can be performed by the user with respect to cach
content node.

Each row of the access control matrix 300 corresponds to
a respective user of the network 100. These users include
various levels of subscribers and system administrators. The
number of users will typically be in the millions. Thus. the
access control matrix 300 will typicalty have millions of
rows. Each column of the access control matrix 300 corre-
sponds to a respective node of the Directory Service struc-
ture of FIG. 2. The total number of nodes in the Directory
Service structure will typically be in the tens of thousands.

Each entry in the access control matrix 300 is in the form
of a 16-bit access rights value (represented by the symbol
“XXXX” in the figures), and specifies the access rights of a
given user at a given node (or equivalently. specifies the
rights of a given user with respect to a given content object).
For example, the entry for user 1 at node 1 specifies the
access rights user 1 has with respect to the content object
corresponding to node 1 of the Directory Service structure.
An entry of 0000H (in which “H” indicates the number is in
hexadecimal) in the access control matrix 300 specifies that
the user has no rights at the node. or equivalently, that the
user cannot access the corresponding content object. The
Directory Service will not show such a node to the user.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 162 of 172

5.941.947

17

Thus. for example. if user 2 has an entry of 0000H for node
1. user 2 will not see the icon for node 1 when navigating the
Directory Service structure via the Explorer. (As described
below. entries of 00000H are not actually stored.)

In the preferred embodiment, the access rights values of
the access control matrix 300 are generally in the form of
privilege level masks, with each defined bit corresponding to
a respective user privilege level. FIG. 3B illustrates a
preferred basic set of user privilege levels, and the corre-
spondence between these privilege levels and the bits of the
access rights values. With reference to FIG. 3B. bits 0-6
correspond respectively to the user privilege levels of
viewer, observer., user. host. sysop manager, sysop and
supersysop. and bits 7-15 are reserved for future definition.
Thus. for example. an access rights value of 0024 hexadeci-
mal (bits 2 and 5 set to one, and all others clear) indicates
user privilege levels of “sysop” and “user.”

Although this approach uses a hierarchy of privilege
levels. various non-hierarchical approaches are possible. For
example, the access rights values may directly specify the
access operations that can be performed by the users, with,
for example, bit 0 specifying whether the user has read-only
access. bit 1 specifying whether the user has read/write
access., and so on.

In the preferred embodiment. the general privilege levels
of FIG. 3B are transformed into specific access capabilities
by the various on-line services (such as Chat, BBS. and the
Directory Service). For example. the Chat service may give
moderator-type access capabilities to users that have the
privilege level of “host.” The access capabilities correspond-
ing to a given privilege level may vary from on-line service
to on-line service. Generally, however. the access capabili-
ties within a given on-line service will be consistent with the
following privilege-level “definitions™:

Viewer. The user can see the existence of the node. but
cannot open or access the corresponding service. The
user may be given the ability to subscribe to the service
(to obtain a higher privilege level with respect to the
service), and may be able to view certain (such as a
textual description) properties of the node. (This is the
lowest level of access rights a user can have with
respect to a node. A user with no access rights with
respect to a node cannot view the name. icon, or any
other feature of the node).

Observer. The user can see the existence of the node and
can open the service, but cannot actively participate in
the service. (For example. an observer for a BBS folder
node may be given read-only access to the messages
within the folder). The user may be given the ability to
subscribe to the service.

User. The user can do whatever is “normal” for the
particular service. For example, the user may be given
the ability to post BBS messages within public BBS
folders. or may be given the ability to actively partici-
pate in public Chat conferences.

Host. The user is given host-level or leadership-level
privileges (where applicable) for the service. For
example, the Chat service may give the host user
moderator privileges.

Sysop. The user is given the access rights consistent with
normal (entry-level) sysop-type activities for the
service. such as the ability to delete BBS messages. or
the ability to edit a certain subset of the properties of a
node.

Sysop Manager. The user is given various ownership-type
privileges with respect to the node. For example, the

5

10

15

20

25

30

35

45

50

55

65

18

sysop manager for a given node may be given the
ability to change any of the properties (¢.g.. name, icon
ID. etc.) for that node.

Supersysop. The user has the highest level of access

authority provided by the service.

As indicated by the foregoing. the privilege level defini-
tions are generally open ended. giving the various services
flexibility in assigning specific access capabilities to users.
This is particularly true for the privilege levels of *user.”
“host.” and “sysop.” which may be translated into signifi-
cantly different access capabilities by different services.

Advantageously, the privilege levels are not limited to
predefined accesses capabilities such as read-only. read/
write. modify, append and delete. but rather are flexible
enough to include new types of access capabilities that may
later be defined. Thus, as new types of access capabilities are
defined (when, for example, new services and new object
types are created), these new access capabilities can be
implemented using the existing user privilege levels. In
other embodiments of the invention. the access rights values
may correspond uniquely to predefined sets of access opera-
tions.

By way of example, suppose that a voice-based Chat
service is added which assigns a “voice override™ priority
level of either low, medium or high to each member of a
given voice Chat conference, to thereby give certain users a
greater degree of control over the conversation than others.
To implement these three newly-defined access capabilities
without defining new user privilege levels, bits 2. 3 and 5 in
FIG. 3B (corresponding to user privilege levels of user, host
and sysop) could be used, respectively. to specify voice
override priority levels of low. medium and high.

With further reference to FIG. 3B. additional user privi-
lege levels can be defined as needed (using bits 7-15) to
achieve higher degrees of privilege-level granularity. Also,
services can be configured to give special meaning to certain
combinations of privilege level bits. For example. an on-line
service could give special access capabilities to users that
have both the “host™ and *“sysop” bits set.

To simplify the description which follows. the term
*access rights” will hereinafter be used to refer generally to
the access rights values, and to the privilege levels and/or
access capabilities associated with these access rights val-
ues.

With reference to FIG. 3A. in a network that has on the
order of millions of subscribers and thousands of content
objects, the access control matrix 300 will be extremely
large, and will normally exceed the virtual memory capacity
of conventional servers. Thus, it would not be feasible to
store the entire access control matrix 300 on a single server.
Further. even if the access control matrix 300 were divided
and stored across multiple servers. the time required to
search the access control matrix 300 (to determine the rights
of a user with respect to an object) would be long. and the
user would therefore experience significant time delays
when moving from object to object.

In accordance with the present invention. the above-
described limitations are overcome by effectively compress-
ing the access control matrix 300 both horizontally and
vertically, to thereby reduce the quantity of access rights
data that needs to be stored. Horizontal compression (the
reduction of the number of columns) is effectively achieved
by grouping together content objects which may be treating
the same for security purposes. Vertical compression (the
reduction of the number of rows) of the matrix 300 is
effectively achieved by the formation of user groups. Each
compression technique is described in detail below. The

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 163 of 172

5.941.947

19

compression of the access control matrix 300 is “effective.”
rather than actual. since the access control matrix 300 is not
ordinarily generated in the uncompressed form of FIG. 3A.

The compression of the access control matrix 300 advan-
tageously enables the information contained therein to be
stored on each security server 150 (within each relational
access rights database 152).

5. Compression by Grouping of Objects (FIGS. 4A and 4B)

In accordance with the present invention, the number of
columns of the access control matrix 300 is reduced by
effectively grouping together the content objects that can be
treated the same for security purposes. and then storing only
the access rights information for each group (rather than
each content object). With reference to FIG. 4B, each object
group is identifiable by a mnemonic name (“Internal
Public.” “Internal 18-and-older.” etc.), but is represented by
a umique. 32-bit value referred to herein as the “security
token” (or simply “token”). For example. the object group
with the name “Internet 18-and-older” has a security token
of 4(i.e.. 0004H). The mnemonic names generally represent
different content categories that have been defined for secu-
rity purposes. To help to distinguish object groups from user
groups (which are discussed below), the term “content
categories” will be used herein to refer to the object groups.
The security tokens serve as content category identifiers.

With reference to FIG. 4A. which illustrates the horizon-
tally compressed access control matrix 300'. each column of
the matrix corresponds to one content category. and is
represented by the content category’s security token.
Because the total number of content categories will normally
be significantly lower than the total number of content
objects, the number of columns will be significantly reduced
over the access control matrix 300 of FIG. 3A.

With reference to FIG. 4B. each content category (i.e..
object group) contains the content objects which fall within
a predetermined security classification. For example. the
category “Imternct 18-and-older” contains all Internet
objects which have been classified (typically by system
administrators) accordingly. In the preferred embodiment,
each content object (or equivalently, each node of the
Directory Service structure) is assigned to exactly one
content category. and a content category can contain as few
as one content object.

As described below, security tokens are also preferably
defined for certain non-Directory Service entities. such as
distribution lists for sending electronic mail, and connec-
tions to classes of services. This allows the GetAccoutRights
API and access rights database 152 to be used to control
access to entities that do not correspond to respective nodes
of the Directory Service. These non-Directory-Service secu-
rity tokens are not stored as node properties, but rather are
stored by the entities (such as the Mail servers 120 and
Gateways 140) with which they are associated.

As aresult of the grouping of the content objects, a user’s
privilege level (or privilege levels) will be the same for all
content objects within a given content category. For
example. if a given user has the privilege level of “observer”
with respect to one content object in the Internet 18-and-
older content category. that user will also have the privilege
level of observer with respect to all other content objects of
the Internet Public content category.

Although the categories listed in FIG. 4B are content
based, other bases for categorizing the data entities to which
access is controlled are possible. For example, in embodi-
ments of the invention that involve the control of accesses to
software resources. the data entities may be grouped accord-
ing to resource types, with categories such as “user-level
threads.” “system-level threads.” “executable files.” and
“semaphores.”

10

15

20

25

30

35

45

50

55

65

20

With further reference to FIG. 4B, the content categories
corresponding to tokens 1-4 are a basic set of groups which
may be used with an initial implementation of the network
100. As the content of the network grows, these content
categories may be subdivided into sub-categories. to thereby
achieve a higher degree of access rights granularity with
respect to different types of content objects.

The content categories comresponding to tokens 100 and
101 are examples of content categories which may be
defined to provide privacy over certain types of data. The
content category “Corporation X Beta Test Data.” for
example. may contain all BBS objects (e.g.. folders and
messages) which pertain to the beta test of a software
product of Corporation X. Access to such a group could be
limited to individuals who are participating in the beta test,
plus certain employees of Corporation X. This would allow
Corporation X to privately correspond with beta test
participants. without other users being able to view such
correspondence. The content category “Family and Friends
for Brown Family” may similarly be formed to allow private
correspondence between a small group of subscribers (e.g..
Brown family members plus designated friends), and may
contain, for example, Chat and BBS objects which have
been designated for this purpose. Of course. many different
family and friends content categories can be defined to
permit private correspondence between many different sub-
groups of users.

As indicated above. the 32-bit security tokens are pref-
erably stored by the Directory Service as properties of nodes
(in addition to certain tokens that have been defined for
controlling access to non-Directory-Service entities). With
reference to FIGS. 2 and 4B. for example. nodes 6, 7 and 8
could each have the security token of 0002H stored as a
property. indicating that the three corresponding content
objects are classified as “Internal 18-and-older” data for
security purposes. As described in the following sections.
the storage of the security tokens as node properties permits
the Directory Service to rapidly and efficiently determine the
rights of a user at a particular node. In other embodiments
of the invention, the security tokens may be stored elsewhere
within the system. For example. each on-line service could
store or cache the security tokens for its own content objects.

In the preferred implementation of the network. security
tokens are defined by system administrators as needed, and
are entered as properties of nodes (typically only by users
with at least sysop-level privileges with respect to such
nodes) using the Sysop Tools client application. When, for
example, a new service is created on the network. the new
service can either be assigned its own security token (to
allow separate security for the area). or can use an existing
security token, such as the security token of the new
service’s parent node.

6. Compression by Grouping of Users (FIGS. 5A and 5B)

In the preferred embodiment of the on-line services
network 100, large numbers of users will typically have the
same or similar access rights with respect to many of the
content objects. Thus, the number of rows of the access
control matrix 300’ can be significantly reduced by assigning
users that have like access rights to user groups. and by
storing the access rights of the user groups in place of
user-specific access rights. In the preferred implementation
of the network 100. this technique reduces the number of
rows by several orders of magnitude.

FIG. 5A illustrates the access control matrix of FIG. 4A
following the assignment of users to user groups. and FIG.
5B illustrates a preferred basic set of user groups. Each user

group is identifiable by a mnemonic name (“everyone.”

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 164 of 172

5.941.947

21

“allsysops.” etc.). but is represented internally by a 16-bit
group ID. Each user group represents a group of users (i.e..
user accounts). The following is a brief description of the
basic user groups listed in FIG. 5B.

Everyone. All user accounts.

AllSysops. All users that have sysop privileges with
respect to at least one content category. Members of
this group can use the Sysop Tools client application to
edit the Directory Service structure (FIG. 2), although
the specific capabilities of users to edit the structure
will normally vary from user to user.

SuperSysops. A small group of system administrators that
have generally unlimited accesses rights. Supersysops
can, for example. define new user groups and new
security tokens.

Guest. User accounts that are used for demonstrations and
marketing purposes.

Registration/signup. Accounts that are limited to registra-

tion and signup privileges.

18-and-older. Accounts which have access to 18-and-

older-only type content objects.
Other groups may include. for example “Company X Beta
Test Users.” “Company Y Employees.” etc.

Associated with each user group is a corresponding set of
access rights. which are specified by a respective group-
specific row 502 of the access control matrix 300". The
access rights for group 1 (i.e.. the group “everyone.” which
has a group ID of 1), for example. are represented by the
access rights values in the first row of the matrix 300". The
total number of user groups (and thus the number of group-
specific rows 502) will typically be very small in compari-
son to the total number of users. For example. in a network
with millions of users, the number of user groups may be as
few as several hundred.

Every user account (and thus every user) is assigned to at
least one, and possibly multiple user groups. When a user is
a member of multiple user groups. the user has all of the
access rights associated with both such groups. For example,
if a user is a member of both the “everyone” group and the
“allsysops™ group. the user will have all of the access rights
associated with the everyone group plus all of the rights
associated with the all sysop group.

In the preferred embodiment, user groups are defined by
system administrators based on need. Membership within
each group is controlled by updating a group-member table
602 which is stored on the security servers 150. The group
member-table 602 contains the user group IDs and corre-
sponding user account numbers for every user group that has
been defined. Updates to the group-member table 602 can be
made by system administrators using a database editing
program. Updates to this table can also be made automati-
cally in response to certain user actions. For example. a
service which provides an on-line subscription feature may
be configured to automatically update the group-member
table 602 whenever a user subscribes to the service. to
thereby add the user to a corresponding user group. The
group-member table 602 is further described below under
the heading ACCESS RIGHTS DATABASE.

With reference to FIG. SA., in addition to the rows 502 that
specify the access rights of the various user groups. the
compressed access control matrix 300" includes account-
specific rows 504. Each account-specific row specifies rights
that are to be “added on”to the group-based rights of the
corresponding user. For example, if user A (FIG. 5A) is a
member of user groups 1 and 2 only, the access rights of user
A will be the rights of group 1. plus the rights of group 2.

10

15

20

25

30

35

45

50

55

65

22

plus the rights specified in the account-specific row for user
A. When the rights of a given user to a given content
category are specified in multiple rows of the compressed
access control matrix 300", the associated access rights
values (XXXX) are logically ORed together to produce a
summation of the row-specific rights. By way of example.
suppose that user A has certain access rights with respect to
content category 1 (i.e.. the content category corresponding
to token 1) by virtue of being in user groups 1 and 2. and that
user A has also been given special rights (such as sysop
privileges) with respect to content category 1 that are
specified in the account-specific row for user A. To generate
a 16-bit access rights value for user A with respect to content
category 1. the three 16-bit access rights values (group 1.
token 1). (group 2. token 1), and (user A. token 1) are
logically ORed together. Numerical examples of this process
are provided below.

As indicated by the foregoing. the account-specific rows
are used to give certain users “special” access privileges
beyond the “‘general” or “group-based” access privileges
obtained by virtue of being in one or more user groups. For
example, an account-specific row may be added to give a
particular user sysop privileges with respect to a certain BBS
folder and its contents, or to give the user moderator
privileges with respect to a particular Chat conference.
Typically. the number of account-specific rows 504 of the
compressed access control matrix 300" will be very small in
comparison to comparison to the total number of users of the
network 100. For example, for a network having millions of
users, the number of account-specific rows 504 will typi-
cally be in the hundreds.

In the preferred implementation of the access rights
database 152, which is described below. further compression
of the compressed access control matrix 300" is effectively
achieved by storing only the non-zero entries (i.e.. access
rights values not equal to 0000H) of the matrix.

7. Access Rights Database (FIG. 6)

FIG. 6 illustrates a preferred implementation of the access
rights database 152. Generally. the access rights database
152 includes all of the information represented by the
compressed access control matrix 300", plus a table 602 that
indicates the members (i.e.. users) of each user group. As
indicated above, the access rights database 152 is preferably
stored on each security server 150. In other embodiments,
the access rights database 152 may be implemented else-
where within the network. For example, the access rights
database 152 could be implemeanted on one or more of the
application servers 120 and/or Gateways 140. Also. although
the access rights database 152 is preferably implemented as
a relational database. other database arrangements are pos-
sible. For example. a hierarchical database could be used.

In the preferred embodiment, the access rights database
152 is generated and updated directly, without initially
generating and/or compressing an access control matrix 300.
Stated differently, the above-described horizontal and verti-
cal data compression techniques are inherent features of the
preferred database implementation. It is contemplated.
however, that these compression techniques can be used to
transform an existing access rights database (such as a
database of an existing network) into a relational database of
the general type shown in FIG. 6.

With reference to FIG. 6. the access rights database 152
includes three tables: a group-member table 602, a group-
token table 604, and an account-token table 606. The group-
member table 602 specifies the membership of each user
group that has been defined. with each row of the table 602
specifying one user group and one user who is a member of

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 165 of 172

5.941.947

23

the group. User groups are specified in the table 602 by their
16-bit user group IDs. and users (i.e.. user accounts) are
specified by their 32-bit user account numbers. With refer-
ence to the example table entries shown in FIG. 6. user
group 1 includes at least users 1 and 2, and user group 2
includes at least users 2 and 27.

The group-token table 604 corresponds to the group-
specific rows 502 (FIG. SA) of the compressed access
control matrix 300". Each row of the group-token table 604
specifies one user group, a content category (specified by its
32-bit security token) to which members of the user group
have access. and the access rights (in the form of privilege
levels) the group’s members have with respect to the objects
of the content category. By way of example, the first row of
the group-token table 604 indicates that members of group
1 have access rights of 0004H (specifying a privilege level
of “user.” as indicated by FIG. 3B) with respect to all objects
within content category 5. The account-token table 606
corresponds to the account-specific rows 504 (FIG. 5A) of
the compressed access control matrix 300". Each row of the
account-token table 606 specifies one user (i.e.. one user
account), a content category to which the user has access.
and the account-specific access rights the user has with
respect to objects within that content category. By way of
example. the first row of the account-token table 606 indi-
cates that user 1 has access rights of 0008H (indicating the
privilege level of “host”) with respect to objects within
content category 5. These account-specific access rights are
in addition to the group-based rights of 0004H that user 1
has with respect to content category 5. Thus. user 1 will be
given both user-level (0004H) and host-level (0008H)
access capabilities with respect to all objects within content
category S.

Updates to the tables 602, 604, 606 arc preferably made
by system administrators using a database editing program
which is part of the Sysop Tools client application. As will
be appreciated by those skilled in the art. any of a variety of
conventional database editing packages may be used for this
purpose.

In addition to or in place of the account-token table 606,
an exclusion table (representatively shown by the account-
token table 606. which is identical in format) may optionally
be implemented to take away certain group-based rights of
users. The exclusion table has the same format as the
account-token table 606. but specifies the access rights that
are to be subtracted from (or “masked off”’) the user’s
account, with respect to the content category specified
therein. For example, an exclusion table row containing the
entries (account no.=2), (token=5). (access rights value=
0020H) would indicate that the group-based access rights of
0020H are to be masked off from the account of user 2,
leaving user 2 with access rights of only 0004H with respect
to content category 5. (Without this exclusion table entry. the
rights of user 2 with respect to content category 5 would be
0024H. indicating *“sysop” and “user” level privileges.)

The implementation of an exclusion table is useful. for
example. for taking away access rights of users who misuse
the on-line services. For example. if a particular user con-
sistently uses profanity in BBS messages. the exclusion list
could be used to lower that user’s BBS access capabilities to
a read-only level. The handling of exclusions on an excep-
tion basis advantageously permits the benefits of compress-
ing the access rights matrix to be retained.

As will recognized by the foregoing. the inclusion of
either an account-token table or an exclusion table will
advantageously allow access rights to be customized on a
peruser basis.

10

15

20

25

30

35

45

55

65

24

8. queries of Access Rights Database (FIGS. 7 and 8)

In the preferred embodiment, each security server 150 is
programmed to receive account-specific access rights que-
ries from the application servers 120 and Gateways 140
within the network, and to respond to each such query by
returning all of the access rights data of the user specified in
the query. The queries are in the form of remote procedure
calls (RPCs) which specify the account number of a single
user, and are generated by the calling servers (i.e.. the
application servers 120 and Gateways 140) using a GetAc-
countRights APL A round robin approach is preferably used
to assign specific queries to specific security servers 150.

To reduce the frequency of queries to security servers 150
(and to avoid the delay associated with such queries), the
GetAccountRights API implements a caching scheme
wherein the user-specific access rights data returned by the
security server 150 is stored within an access rights cache
802 (FIGS. 8 and 9) of the calling server. The GetAccoun-
tRights API and associated caching scheme are described
below. FIG. 7 illustrates the sequence of steps taken a
security server 150 each time a query is received for the
access rights of some user (designated as “user X” in FIG.
7). With reference to block 702, the group-member table 602
is initially accessed to identify all of the user groups of
which the user is a member. If the subject of the query is user
2 (FIG. 6). for example. this step would identify groups 1
and 2 (and any other groups in which user 2 is a member).

With reference to block 704, once the user groups have
been determined. the group-token table 604 is used to
identify the content categories (identified by their respective
security tokens) to which the user has access. and to obtain
the access rights values comresponding to such content
categories. If the user has multiple access rights values
comresponding to the same token (by virtue of being in
multiple user groups), these access rights values are logi-
cally ORed together to produce a single 16-bit access rights
value, as generally described above. Assuming for purposes
of example that the entries shown in FIG. 6 are the only table
entries, this step would produce the following results,
respectively, for users 1, 2 and 27:

USER 1:

Token 5 rights=0004H

Token 9 rights=0001H

USER 2:

Token 1 Rights=0004H

Token 5 rights=(0004H) OR (0020H)=0024H

Token 9 rights=0001H

User 27:

Token 1 Rights=0004H

Token 5 rights=0020H

The result of the step of block 704 is a group-based access
rights list. which specifies the access rights (in the form of
tokens and corresponding access rights values) the user has
by virtue of being a member of one or more user groups.
These access rights are referred to herein as the user’s
“group-based” access rights.

With reference to block 706. once the user’s group-based
access rights have been obtained from the group-token table
604, the account-token table 606 is accessed to obtain any
additional rights that are to be added to the user’s group-
based rights. For user 1. for example. token S rights of
0008H and token 6 rights of 0001H would be obtained.
Since user 1 already has group-based rights of 0004H with
respect to token 5. the access rights values 0004H and
0008H will eventually be ORed together to produce a single
16-bit value. As described below, this step of ORing the

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 166 of 172

5.941.947

25

group-based and account-based access rights values is
performed. if at all. by the calling server after the query
returns.

In embodiments of the access rights database 152 that
include an exclusion table, the exclusion table is then
accessed to obtain any access rights that are to be taken away
from the user’s account. This step is similar to the step of
accessing the account-token table 606 (since the two tables
are identical in format), except that any access rights values
read from the exclusion table are applied as masks for
masking off the group-based rights specified therein. The
step of masking off the user’s rights can be performed either
before or after the query returns.

The result of the steps 704 and 706 is an access rights list
which contains all of the tokens and corresponding access
rights values for the user. For user 1, for example. the access
rights list would have the following entries (assuming no
other table entries exist):

(TS5, 0004H), (T9, 00C1H), (TS, 0008H), (T6, 0001H).

Each entry in this list is in the form of a 32-bit token
(designated by the letter “T”) followed by the corresponding
16-bit access rights value. Tokens which do not appear in
this list (such as Token 7) represent content categories to
which the user has no access rights. and correspond to
content objects which will not be shown to the user by the
Directory Service. As illustrated for token § in this example.
an access rights list may have two entries for the same token,
since the account-specific access rights values are kept
separate from the group-based values.

In other embodiments of the invention. the access rights
values may be omitted from the access rights lists. so that
each user-specific access rights list consists simply of a
string of security tokens (i.c., category identifiers) that
identifies the content categories to which the user has access.
This may be desirable, for example. in systems that do not
require the specification of access rights on a per-object (or
on a per-object-category) basis.

With reference to block 708. once the full access rights list
for the user has been generated, the security server 150 sorts
the tokens in numerically ascending order. For the user 1
access rights list shown above. this step may render the
following list:

(T5, 0004H), (TS, 0008H), (T6, 0001H), (T9, C001H).

With reference to block 710, this list is then returned to the
calling server. The calling server stores this user-specific
access rights list within its access rights cache 802, and
searches this list for specific tokens to determine the access
rights of the user with respect to specific content categories.
As described below, the step of numerically sorting the
tokens facilitates cache searches by the calling server for
specific tokens.

FIG. 8 illustrates the process by which a Directory Service
server 120 (i.e., a DirSrv or BBS server) queries a security
server 150 to determine the access rights of a user, user X,
and illustrates the caching scheme used by the Directory
Service server 120 to cache access rights data. The query is
in the form of an RPC call to the security server 150,
specifying the account ID of the user. This query will
typically be generated when user X initially opens the
Explorer window.

The security server 150 responds to the query by access-
ing its locally-stored copy of the access rights database 152,
and by returning the entire numerically-ordered access rights
list for user X. This access rights list specifies the access

10

15

20

25

30

45

50

55

65

26

rights of user X will respect to all nodes of the Directory
Service structure. The Directory Service server 12 stores
the user’s access rights list within a user-specific row of its
access rights cache 802. As user X subsequently moves
through the Directory Service structure (FIG. 2) to view the
various content objects, the Directory Service server 120
checks the cache row corresponding to user X (provided that
the row has not been flushed from the cache) for the security
tokens of the various nodes of the Directory Service struc-
ture. As described above. these security tokens are prefer-
ably stored as node properties of the Directory Service
structure.

Each check of the cache 802 is initiated by the Directory
Service by generating a GetAccountRights call, specifying
as parameters of the call the user’s account number and a
token. The GetAccountRights API either returns the 16-bit
access rights value of the user with respect to the token (i.e..
with respect to the node which has the token stored as a
property). or else returns a code indicating that the user does
not have access with respect to the token. If no row exists in
the cache 802 for the user. the GetAccountRights API
generates a query to a security server 150 to create a cache
row for the user, and then checks the cache row for the
specified token. If a cache row is already present for the user.
no query is necessary. since the information stored in the
user’s cache row fully specifies the user’s access rights with
respect to all nodes of the Directory Service structure.

To provide a specific example. suppose that a user double
clicks on the icon for node 6 (FIG. 2) of the Directory
Service structure (assuming that the Directory Service has
already returned the properties of node 6). The Directory
Service will respond by reading the security tokens for
nodes 7 and 8 (which are stored as properties of these
nodes), and by generating two GetAccountRights calls. one
for node 7 and one for node 8. The GetAccountRights call
for node 7 will result in a check of the user’s cache row (and
possibly a query to create the cache row) for the token
corresponding to node 7. and the GetAccountRights call for
node 8 will result in a check of the user’s cache row for the
token corresponding to node 8. Each GetAccountRights call
will return with either a 16-bit access rights value. or, if the
security token is not found in the user’s access rights list, a
code indicating that the user does not have access to the
node. If the user does not have access to the node. the
Directory Service does not show the node to the user, and the
user is prevented from either seeing the node or accessing
the comesponding content object continuing the above
example. if the user’s access rights list (stored in the cache
802) does not contain the security token for node 7. the
GetAccountRights API will return a code indicating that the
user cannot access node 7. The Directory Service will
respond to this code by not sending any node 7 properties to
the user’s computer 102, so that the node will pot be
displayed by the Explorer to the user. The user will thereby
be prevented from accessing node 7. If. however. the token
for node 7 is found in the user’s cache row. the GetAccoun-
tRights API will read the corresponding 16-bit access rights
value from the cache 802. and will return this value to the
Directory Service. The Directory Service will then return the
properties of node 7 that were requested by the Explorer (as
parameters of a GetChildren call. as described above). and
the Explorer will display node 7 to the user. The Directory
Service and/or Explorer may additionally perform certain
actions based upon which of the privilege level bits are set
in the 16-bit access rights value. For example. if the “sysop
manager” privilege level bit (bit 4 in FIG. 3B) is set. the
Directory Service will inform the Explorer (upon request

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 167 of 172

5.941.947

27

from the Explorer) that the user has sysop manager privi-
leges at node 7. and the Explorer will display a Sysop Tools
edit menu that allows the user to edit the properties of node
7. The GetAccountRights API is described in further detail
below.

During a typical logon session. the Directory Service will
request the user’s access rights to hundreds of different
content objects. and will thus generate hundreds of GetAc-
countRights calls. As described below, only the first GetAc-
countRights call for the user will result in a query to a
security server 150. and all subsequent GetAccountRights
calls will normally result in a check of the user’s row in the
cache 802 without a new database query. Because accesses
to the local access rights cache 802 are typically much faster
than queries of the network-wide access rights database 152,
use of the access rights cache 802 significantly increases the
performance of the GetAccountRights APL and thereby
allows the user to rapidly move from node to node of the
Directory Service structure. The storage of the security
tokens as Directory Service node properties provides for a
high degree of performance of the Directory Service, which
is the service which typically generates the most GetAc-
countsRights calls.

Although the description thus far has focussed on the use
of the GetAccountRights API by the Directory Service. as
noted above, other services and machines on the network
100 can also preferably use the API to determine the rights
of users. For example, Chat servers 120 may generate
GetAccountRights calls as a user moves from Chat object to
Chat object within the Chat service. The process by which
a non-Directory-Service machine determines the access
rights of a user to an object is generally the same as shown
in FIG. 8 and described above.

Further, although the foregoing description has focussed
on the security tokens that are stored as properties of
Directory Service nodes, as indicated above, security tokens
may also be stored by other types of entities, so that security
can be provided via the GetAccountRights API without
creating a corresponding Directory Service node. In the
preferred embodiment. for example. the Mail servers store
security tokens in association with mail distribution lists.
and use these tokens (and the GetAccountRights API) to
determine whether individual users are authorized send mail
via such distribution lists. Also, the Gateways 140 store
security tokens which correspond to various classes of
services. including a class of generally-available services. a
class of public services that are made available to the general
public (e.g.. non-subscribers). and a class of toll free ser-
vices. Whenever a user requests to connect to a service, the
corresponding Gateway 140 calls GetAccountRights (using
the token of the corresponding class), and opens a pipe to the
service only if the user is authorized to access the service.

In the course of a typical logon session. a user may
connect to many different application servers 120 and
services. and may access many different content objects
within each service. Thus, the access rights list of the user
will typically be cached on multiple different machines 120,
140 within the network at the same time.

In the preferred embodiment. if an update is made to a
user’s access rights (via an update to the relational database
152) while the user’s access rights list is cached on a
machine 120, 140. the cached access rights list will continue
to be used. even though it is no longer up-to-date. Thus, an
update to the user’s access rights will not take effect until the
next time the user’s access rights list is read from the
database 152. In other embodiments. a mechanism may be
provided for invalidating all cached copies of a user’s access

10

15

20

25

30

35

45

50

55

65

28

rights list upon the occurrence of certain events. such as
upon the generation of an exclusion table entry for the user.
9. Access Rights Cache (FIG. 9)

FIG. 9 illustrates a preferred implementation of the access
rights cache 802. as implemented on the application servers
120 which place GetAccountRights calls. The cache 802
contains 5000 rows. and can thus hold the access rights lists
of 5000 different users. Because the number of user-specific
service sessions handled by a given application server 120
normally will not exceed 5000. the cache 802 is large
enough to hold all of the access rights information of all
users who are being serviced by the application server 120.
For the Gateways 140, an access rights cache of 1000 rows
is used, since each Gateway can handle a maximum of 1000
simultaneous user connections. In other embodiments. the
number of cache rows per machine 120. 140 may be
allocated dynamically, with the maximum number of cache
rows per machine depending upon the amount of memory
available on each respective machine.

Each row of the cache 802 contains 500 slots. Each slot
stores a 32-bit security token and the comresponding 16-bit
access rights value. Each user-specific row can thus store an
access rights list having a length of up to 500 tokens. which
is sufficient to fully specify the access rights of the user with
respect to all nodes of the Directory Service Tree. (Because
many nodes will typically have the same security token. the
number of nodes to which the user has access may greatly
exceed 500.)

The cache 802 is preferably implemented in the dynamic
RAM of each machine 120. 140 that places GetAccoun-
tRights calls. As described above, multiple machines 120.
140 may simultaneously cache the access rights data of the
same user. For example. the user’s access rights list may
simultaneously be stored in the respective caches 802 of a
DirSrv server 120 to which the user is connected. a Chat
server to which the user is connected. and the Gateway 140
that is handling the user logon session.

In the preferred embodiment. only a single access rights
cache 802 is implemented on any given machine 120, 140 at
a time, even if the machine is allocated to multiple service
groups. Thus, for example. if two different service applica-
tions (such as the Chat and DirSrv applications) are con-
currently running on the same application server 120 and
both generate GetAccountRights calls. these two service
applications will share the same access rights cache 802.

With further reference to FIG. 8, each machine which
implements an access rights cache 802 contains cache
flushing structures 806 which monitor certain activities to
determine when a user-specific access rights list may be
overwritten in the cache 802. The first such structure is a
least-recently-used (LRU) monitor 808 which monitors
accesses to the cache rows to keep track of which row was
least recently accessed. The LRU monitor 808 specifies.
when the cache 802 is full (i.e., all rows occupied). the cache
row that is to be overwritien when a new access rights list
is returned by a security server 150. Least-recently-used
algorithms are well known in the art.

The second cache flushing structure is a pipe monitor 810
which monitors the number of pipes that each user has to the
application of the application server 120 (or Gateway 140)
on which the cache 802 resides. Whenever the pipe monitor
810 detects that the number of pipes for a given user has
gone to zero (indicating that the user has disconnected from
the server 120), the user’s access rights list is deleted from
the cache 802.

When a cache row is created for a user. the slots of the
user’s cache row are filled in sequential order (from the

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 168 of 172

5.941.947

29

lowest slot number to the highest slot number) as the
numerically-ordered access rights list is returned by the
security server 150. As illustrated in FIG. 9 for the example
access rights list of user 1. the tokens (and corresponding
access rights values) are written to the cache 802 in numeri-
cally ascending order. As illustrated by slots 1 and 2 for user
1. duplicate tokens may be present in the list, indicating that
the user has been given additional rights via the account
token table 606. These duplicate tokens will always fall in
adjacent cache slots.

To obtain the access rights of the user with respect to a
given content category. the GetAccountRights API performs
a binary search of user’s cache row for the token specified
as a parameter of the APL If the token is found. the
corresponding access rights value (stored in the same cache
slot as the token) is read from the cache 802. The GetAc-
countRights API also checks the adjacent slot or slots for
duplicate tokens. If a duplicate token is found, the corre-
sponding access rights value is read and logically ORed with
the first access rights value to generate a single 16-bit access
rights value. By way of example. the call GetAccountRights
(user 1, token 5) would cause the access rights values 0004H
and O008H to be read from the first two slots of the cache
row for user 1. and these two values would be ORed to
produce 000CH.

Advantageously, the GetAccountRights API is structured
to begin the binary search even if the cache row is currently
being filled. allowing the API to return before the entire
access rights list has been returned by the security server
150. Using the access rights list for user 1 (FIG. 9) as an
example, if the search is for token 6. and the cache row is
currently being filled. it is possible (and likely) that token 6
will be found before the cache row for user 1 is complete.
This feature of the GetAccountRights API increases perfor-
mance on GetAccountRights calls which require a query of
the access rights database 152. To take full advantage of this
feature, care is taken by system administrators to assign the
lowest numbered tokens to the most commonly accessed
object groups (since the lowest numbered tokens are the first
to be returned by the security server 150. and the first to be
written to the cache). This feature of the GetAccountRights
API is further described below.

10. GetAccountRights Method (FIG. 10)

FIG. 10 illustrates the sequence of steps corresponding to
the GetAccountRights API. These steps are performed by
the application server 120 (or Gateway 140) that generates
the GetAccountRights call. As described above, the GetAc-
countRights API is called whenever it becomes necessary to
determine the rights of a user with respect to a content
object. The parameters of the GetAccountRights API are the
32-bit account number of the user (designated as “user X™ in
FIG. 10) and the 32-bit token (designated a “token Y™) of the
node.

With reference to decisional block 1002, the calling server
120 initially checks its access rights cache 802 to determine
whether a cache row exists for user X. This is preferably
accomplished using a conventional hash algorithm to search
for the user’s account number.

With reference to blocks 1004-1008. if no cache row
exists for user X, the server determines whether a query
thread has been started to obtain the access rights of user X
from the access rights database 152. If a query thread has
been started. the API sleeps for an appropriate interval (to
allow a cache row to be created for user X). and then
rechecks the cache 802. If no query thread has been started.
the API starts a query thread before sleeping and rechecking
the cache 802. The use of a separate query thread for

10

15

20

25

30

35

45

55

65

30

creating and filling the user’s cache row advantageously
facilitates the concurrent filling of a cache row and searching
of the cache row.

With reference to block 1012, once a cache row has been
created for user X (which may or may not be complete). a
binary search is initiated for token Y. With reference to
blocks 1014-1018. as the binary search progresses. the API
tests the results of the search and takes one of three actions.
If the token is not found but the cache row is not yet
complete (indicating that the access rights list is still being
returned). the API sleeps and then retests the search results.
If the token is not found and the user’s cache row is
complete, the API returns a code indicating that the user
does not have any access rights with respect to the token.

With reference to blocks 1020-1022. if token Y is found.
the corresponding 16-bit access rights value is read from the
cache. The API then checks the adjacent slot or slots in the
cache for token Y. If a duplicate of token Y is found
(indicating that user X has been given additional access
rights with respect to token Y via the account-token table
606). the corresponding access rights value is read from the
cache and logically ORed with the first access rights value.
The result of the logical OR operation is then returned.
11. Assignment of Tokens and Formation of User Groups

In the preferred embodiment of the network 100, new
security tokens are assigned by system administrators (to
create new content categories) as it becomes necessary or
desirable to provide separate security with respect to new or
existing service areas. In accordance with one preferred
mode of operation. security tokens are assigned so as to
create service areas that are managed or “owned” by differ-
ent individuals. The responsibility of monitoring and/or
otherwise managing the content of the network is thereby be
distributed among many (e.g.. 500) different users. including
system administrators. subscribers. and third party content
providers.

To provide a specific example of how ownership may be
assigned to service areas in accordance with the present
invention, suppose that a system administrator wants to
create a new service area, such as a bulletin board on a
particular topic, and wishes to designate a particular sub-
scriber as the owner of the new service area. (In the preferred
embodiment of the network 100, subscribers can request the
creation of certain types of service areas, and can volunteer
to be owners of such areas.) To generate the new BBS
service area. the system administrator creates a BBS folder
node (preferably using the Sysop Tools client application) in
the Directory Service tree. To provide separate security for
this new service area, the system administrator assigns a
unique security token to the folder node. and enters this
security token as a property of the folder node. (BBS
messages subsequently created under the new BBS folder
then inherit this security token, and become part of the same
content category.) To give the user ownership-type privi-
leges to the new service area, the system administrator then
generates a user-specific row in the account-token table 606,
specifying (1) the user’s account number. (2) the newly-
created security token. and (3) an access rights value that has
the “sysop manager” bit (bit 4 in FIG. 3B) set. Finally. the
system administrator adds one or more rows to the group
token-table 604, specifying in each such row: (1) the group
ID of a user group which will be given access to the new
service area, (2) the newly-created security token for the
area. and (3) an access rights value that specifies the
privilege level/s members of the group are to have with
respect to the new service area. For example a row could be
created to give members of group 1 (the group “everyone”)
user-level access to the new area.

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 169 of 172

5.941.947

31

In accordance with another preferred mode of operation,
content categories and associated user groups are formed so
as to create many different “‘private” service areas (such as
the “family and friends” type service areas described above)
that are accessible to different subgroups of users. To pro-
vide a specific example. suppose that a system administrator
wants to create a Chat room to allow members of a certain
organization to carry on an interactive conversation. To
create such a Chat room. the system administrator initially
creates a Chat room node, specifying a unique security token
for the Chat room. The system administrator then updates
the group-member table 602 so as to create a new group that
consists of the accounts of the members of the organization.
(If the group is small. the system administrator may forego
creating a new user group, and may alternatively generate
one user-specific row in the account-token table 606 for each
member of the organization.) Finally. the system adminis-
trator adds a row to the group-token table 604, specifying (1)
the group ID of the newly-created user group. (2) the
security token of the Chat room. and (3) an appropriate
access rights value.

As will be recognized from the foregoing. content cat-
egories and user groups may be formed by system admin-
istrators to achieve any of a variety of different security-
related objectives. These objectives will depend generally
upon the nature of the particular network in which the
present invention is employed. and will depend upon the
type or types of data entities to which access is being
controlled.

As will be apparent to those skilled in the art. the general
criteria used by system administrators for deciding when to
create new user groups and when to assign new security
tokens will ultimately affect the quantity of data stored
within the access rights database 152. In the network 100
described herein. these decisions may advantageously be
made as folder nodes are added to the Directory Service
structure. The decision making process may be assisted or
the decision may be made by a computer software system
which monitors the contents of the access rights database
152, and which recommends modifications that can be made
to the existing user groups and content categories in order to
reduce the quantity of data stored within the database 152.
12. Other Embodiments

As described above. the preferred embodiment uses
Directory Service nodes as the basic content unit with which
different security levels may be associated. Thus, in order to
provide security for a content object. a corresponding node
(with a corresponding security token stored as a property)
must be created in the Directory Service structure. As will be
readily apparent to those skilled in the art. however, various
alternatives to the node-based approach are possible. For
example, the security tokens could be stored or cached with
the content objects, or could be stored within tables main-
tained by the various services (such as Chat or Mediaview).
(Accordingly. it will further be recognized that the present
invention does not require the use of a directory structure).
Hybrid approaches are also possible. in which the security
tokens for some content objects (such as folder-type objects)
are stored within a directory structure. while the security
tokens for other content objects are stored elsewhere within
the system.

It will also be appreciated that although the preferred
embodiment described herein is directed to the security of
user-accessible content objects in an on-line services
retwork. other embodiments may be directed to the security
of entirely different types objects and data entities. For
example. the invention may readily be adapted to control

10

15

20

25

30

35

45

50

55

65

32

user accesses to files in a file system. or to control accesses
by software processes to system resources.
In view of these variations and other variations which
may be apparent to those skilled in the art, the scope of the
present invention is intended to be defined only by reference
to the appended claims.
What is claimed is:
1. A method for controlling user access to a plurality of
data entities in a computer network. said plurality of data
entities stored on a plurality of application servers. said
method comprising the steps of: :
sending an access rights query from an application server
to a security server. said access rights query specifying
a user of the network;

at said security server. accessing a relational database in
response to said access rights query to obtain an access
rights list for said user, said access rights list specifying
access rights of said user with respect to said plurality
of data entities;

sending said access rights list from said security server to
said application server;

at said application server, storing said access rights list in

an access rights cache; and

accessing said cache to determine the access rights of said

user with respect to a specific data entity of said
plurality of data entities.

2. The method according to claim 1. wherein said access
rights list comprises a plurality of category identifiers, each
of said category identifiers specifying a data entity category.

3. The method according to claim 2. wherein said access
rights list further comprises a plurality of access rights
values, each of said access rights values corresponding to a
respective one of said category identifiers and specifying
access rights of said user with respect to data entities that fall
within a respective data entity category.

4. The method according to claim 2. further comprising
the step of determining a data entity category in which said
specific data entity falls.

5. The method according to claim 4. wherein said step of
determining a data entity category comprises accessing a
directory structure which is stored on at least one of said
plurality of application servers, said directory structure
representing an arrangement of said plurality of data entities.

6. The method according to claim 4. wherein said step of
determining a data entity category comprises reading a
category identifier stored with said specific data entity.

7. The method according to claim 4, wherein said step of
determining a data entity category comprises reading a
category identifier that is stored on an application server in
association with said specific data entity.

8. The method according to claim 2 wherein said step of
accessing said cache comprises searching said cache for a
specific category identifier. said specific category identifier
representing a data entity category in which said specific
data entity falls.

9. The method according to claim 2, wherein said step of
storing said access rights list in said cache comprises storing
said category identifiers in a numerical order within said
cache to thereby facilitate searches of said cache.

10. The method according to claim 1, wherein said access
rights list comprises a plurality of access rights values. said
access rights values specifying generic privilege levels of
said user.

11. The method according to claim 10, wherein said step
of accessing said cache comprises the steps of reading an
access rights value from said cache. and translating said
access rights value into a set of specific access capabilities.

12. The method according to claim 11, wherein said step
of translating is performed by a service application running

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 170 of 172

5.941.947

33

on said application server. said service application being
associated with said specific data entity.

13. The method according to claim 1, wherein said step of
accessing said relational database comprises identifying at
least one user group in which said user is a member.

14. The method according to claim 13. wherein said step
of accessing said relational database further comprises iden-
tifying a plurality of data entity groups to which said user
has access rights by virtue of being a member of said at least
one user group.

15. The method according to claim 1, wherein said step of
storing said access rights list in said cache and said step of
accessing said cache to determine the access rights of said
user are performed concurrently.

16. The method according to claim 1. wherein said
plurality of data entities represents the content of an on-line
services network.

17. The method according to claim 1. wherein at least one
of said plurality of data entities is a system resource.

18. The method according to claim 1. further comprising
the step of forwarding said access rights list from said
application server to a different application server when said
user connects to said different application server.

19. The method according to claim 1, further comprising
the step of. if said user is not authorized to access said
specific data entity, preventing said user from seeing a
representation of said specific data entity.

20. The method according to claim 19, wherein said step
of preventing comprises omitting said representation from a
reconstructed directory structure that is shown to said user.

21. A method of determining the access rights of a user of
a computer system with respect to a plurality of data entities
of the computer system. comprising the steps of:

identifying at least one user group of which said user is a

member, said at least one user group being part of a
predefined set of user groups; and

identifying at least one data entity category to which said
user has access by virtue of being a member of said at
least one user group. said at least one data entity
category being part of a predefined set of data entity
categories.

22. The method according to claim 21. wherein said steps
of identifying at least one user group and identifying at least
one data entity category each comprise accessing a relational
database stored on a server of a computer network.

23. The method according to claim 21, further comprising
the step of identifying at least one data entity that falls within
said at least one data entity category.

24. The method according to claim 21, further comprising
the steps of:

determining a specific data entity category in which a

specific data entity falls; and

determining whether said at least one data entity category

to which said user has access includes said specific data
entity category. to thereby determine whether said user
has access to said specific data entity.

25. The method according to claim 21, further comprising
the step of reading an access rights value that specifies
access rights of said user with respect to all data entities that
fall within a data entity category of said at least one data
entity category.

26. The method according to claim 21. further comprising
the step of identifying at least one additional data entity
category to which said user has access. said at least one
additional data entity category being in addition to data
entity categories to which said user has access by virtue of
being a member of user group.

27. The method according to claim 21, wherein said step
of identifying at least one user group of which said user is

10

15

20

25

35

45

50

55

34

a member comprises identifying a plurality of user groups of
which said user is a member.

28. The method according to claim 21, wherein each user
group of said predefined set of user groups comresponds to a
respective set of user access rights with respect to said
plurality of data entities.

29. The method according to claim 21, wherein each data
entity category of said predefined set of data entity catego-
ries contains a respective subgroup of said plurality of data
entities.

30. The method according to claim 21, wherein each data
entity of said plurality of data entities falls within exactly
one data entity category of said predefined set of data entity
categories.

31. The method according to claim 21. further comprising
the steps of:

generating a list of category identifiers that identifies said

at least one data entity category to which said user has
access; and

transmitting said list across a computer network to at least

one server.

32. The method according to claim 31. further comprising
the step of storing said list in a cache memory of said at least
one server.

33. The method according to claim 31. further comprising
the step of storing said list in respective cache memories of
a plurality of servers.

34. The method according to claim 21, wherein said
plurality of data entities represents a content of an on-line
services network.

35. The method according to claim 21, wherein said
plurality of data entities comprises files of a file system.

36. The method according to claim 21. wherein said
plurality of data entities comprises system resources to
which access is controlled by an operating system.

37. In a computer network in which different users have
different access rights with respect to different data entities.
a method of efficiently specifying the access rights of users.
comprising the steps of:

assigning each of a plurality of data entities to one of a

plurality of categorical groups of data entities. each of
said categorical groups containing data entities for
which user access rights may be specified collectively:
and

assigning each of a plurality of users to at least one of a

plurality of user groups. each of said user groups
having a corresponding set of access rights associated
therewith with respect to said plurality of categorical
groups.

38. The method according to claim 37. wherein said step
of assigning each of said plurality of data entities to one of
said plurality of categorical groups comprises storing a
respective categorical group identifier in association with
each of said plurality of data entities.

39. The method according to claim 38. wherein said step
of storing comprises storing a categorical group identifier
within a data entity directory structure.

40. The method according to claim 37. wherein said step
of assigning each of said plurality of users to at least one of
said plurality of user groups comprises assigning at least one
of said users to multiple of said user groups.

41. The method according to claim 37, wherein each of
said data entities is a content object that represents content
of an on-line services network.

42. A system for providing user access to data entities in
a computer network, comprising:

at least one application server that stores a plurality of

data entities. said data entities accessible by a plurality
of users through a plurality of application programs,

Case 2:10-cv-00825-JLR Document 1 Filed 05/18/10 Page 171 of 172

5.941.947

35

different of said users having different levels of access
with respect to at least some of said data entities;

a database which stores access rights values that specify
access rights of said users with respect to said data
entities; and

an access rights cache on said at least one application
server, said access rights cache storing access rights
lists. said access rights lists obtained from said database
in response to requests from said at least one applica-
tion server, each of said access rights lists comprising
a plurality of said access rights values and specifying
access rights for a respective one of said plurality of
users.

43. The system according to claim 42, wherein said access
rights values are stored in said database in association with
category identifiers that identify categories of said data
entities.

44. The system according to claim 43, wherein each of
said lists further comprises a plurality of said category
identifiers.

45. The system according to claim 43, wherein said
database is implemented on a separate server from said at
least one application server.

46. The system according to claim 45, wherein said at
least one application server stores at least a subgroup of said
category identifiers.

47. The system according to claim 43, wherein said access
rights values are stored in said database in further associa-
tion with group identifiers that identify groups of said users.

48. The system according to claim 42, wherein said at
least one application server runs a program module that
generates a query of said database when a user connects to
said at least one application server. said query causing an
access rights list for said user to be obtained from said
database and written to said access rights cache.

49. The system according to claim 48, wherein said
program module deletes said access rights list from said
cache when said user disconnects from said at least one
application server.

§0. The system according to claim 42, wherein said access
rights cache specifies access rights for a variable subset of
said plurality of users.

51. The system according to claim 42, wherein each of
said access rights lists specifies user access rights with
respect to all of said data entities.

52. The system according to claim 42, wherein said at
least one application server comprises an application server
that runs a directory service application program. said direc-
tory service application program providing a directory of
said data entities to said users.

53. The system according to claim 42, wherein said access
rights values contain privilege level bits which specify
general privilege levels. said general privilege levels con-
verted into specific access capabilities by said application
programs. different application programs converting like
privilege levels into different access capabilities.

54. An access rights list stored on a storage medium of a
computer. said access list specifying the access rights of a
user of a network with respect to a plurality of data entities
of said network. said plurality of data entities subdivided
into multiple categorical groups of data entities, said access
rights list comprising:

a plurality of group identifiers. each of said group iden-
tifiers specifying one of said multiple categorical
groups, said plurality of group identifiers specifying a
subset of said multiple categorical groups to which said
user has access rights; and

a plurality of access rights values. each of said access
rights values specifying access rights with respect to

10

15

20

25

30

35

40

45

55

65

36

data entities which fall within a respective one of said
categorical groups of said subset.

55. The access rights list according to claim 54. wherein
said group identifiers are arranged in a numerical order to
facilitate searches for individual group identifiers.

56. The access rights list according to claim 54. wherein
said plurality of data entities represents content of an on-line
services network.

57. The access rights list according to claim 54. stored
within an access rights cache of a server.

58. The access rights list according to claim 54. stored
within an access rights cache of a gateway computer.

59. A relational database for storing access rights data
which specifies access rights of users with respect to a
plurality of data entities of a computer network, said plu-
rality of data entities subdivided into a plurality of
categories. said database comprising:

a first table that maps users to user groups, at least one of
said users being a member of multiple of said user
groups;

a second table which contains. for each of said user
groups, a group-based access rights list that specifies
group-based access rights of members of a respective
user group. said group-based access rights list stored in
association with a plurality of category identifiers that
identify said categories of data entities; and

a third table which contains. for a least one of said users.
a user-specific access rights list that specifies special
rights for a respective user, said user-specific access
rights list stored in association with said plurality of
category identifiers.

60. The relational database according to claim 59,
wherein said special rights are additional rights that are
added to said group-based rights of said respective user.

61. The relational database according to claim 59,
wherein said special rights are exclusion rights that are
subtracted from said group-based rights said respective user.

62. The relational database according to claim 59.
wherein said data entities are content objects of an on-line
services network.

63. In a computer network in which different users have
different access rights with respect to different data entities,
a method of specifying the access rights of a user with
respect to a plurality of data entities, comprising the steps of:

assigning a category identifier to said plurality of data
entities;

storing said category identifier with or in association with

each data entity of said plurality of data entities; and

storing an access rights value in association with said
category identifier and in further association with an
account number of said user. said access rights value
specifying said access rights of said user with respect to
said plurality of data entities.

64. The method according to claim 63. wherein said
access rights value comprises a plurality of privilege level
bits. each of said privilege level bits corresponding to a
respective privilege level which may be assigned to said
user.

65. The method according to claim 63. wherein said
access rights value specifies a sysop privilege level of said
user with respect to said plurality of data entities.

66. The method according to claim 63, wherein said step
of storing said category identifier comprises storing said
category identifier in association with at least one node of a
directory structure, said directory structure providing a
directory to at least said plurality of data entities.

Case 2:10-cv-00825-JLR Document1 Filed 05/18/10 Paqge 172 of 172

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION

PATENT NO. :5,941,947 Page 1 of 1
DATED : August 24, 1999
INVENTOR(S) : Brown et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is
hereby corrected as shown below:

Column 13,
Line 39, “Dirsrv” should read -- DirSrv --.
Line 50, “Depending” should begin a new paragraph.

Column 23,
Line 18, “The” should begin a new paragraph.
Line 67, “peruser” should read -- per-user --.

Column 24,
Line 20, “FIG.7” should begin a new paragraph.

Column 26,
Line 47, “object continuing” should read -- object. Continuing -- with “Continuing”
beginning a new paragraph.

Column 30,
Line 32, “thereby be” should read -- thereby --.

Signed and Sealed this

Twenty-third Day of December, 2003

JAMES E. ROGAN
Director of the United States Patent and Trademark Office

	Exs A-I.pdf
	Ex. A - US7251653
	Ex. B - US5742768
	Ex. C - US5644737
	Ex. D - US6263352
	Ex. E - US6122558
	Ex. F - US6542164
	Ex. G - US6281879
	Ex. H - US5845077
	Ex. I - US5941947

