oS v o NN oy B WD —

[N N O L S s S e S e e e e e T

-

BENEDICT O'MAHONEY (Bar No.152447)

TERRA LAW

177 Park Avenue, Third Floor
San Jose, California 95113
Telephone: 408-299-1200
Facsimile: 408-998-4895

Email: bomahoney(@terralaw.com

JONATHAN T. SUDER (Pro Hac Vice To Be Filed)
CORBY R. VOWELL (Pro Hac Vice To Be Filed,
TODD I. BLUMENFELD (Pro Hac Vice To Be
FRIEDMAN, SUDER & COOKE

Tindall Sﬁl[lal‘e Warehouse No. 1
604 East 4" Street, Suite 200
Fort Worth, Texas 76102
Telephone: %817) 334-0400
Facsimile: (817)334-0401
Email: jts@fsclaw.com

Email: vowell@fsclaw.com

Email: blumenfeld@fsclaw.com

Filed

OCT 2 9 2017

iled) RICH

EDWARD W. GOLDSTEIN (Pro Hac Vice To Be Filed)

GOLDSTEIN LAW, PLLC

1177 West Loop South, Suite 400

Houston, Texas 77027
Telephone: (]713) 877-1515
Facsimile: (713) 877-1737

H Email:" egoldstein@gliplaw.com

Attorneys for Plaintiff

SOFTVAULT SYSTEMS, INC.

o
ree >
S @

UNITED STATES DISTRICT COURT
NORTHERN DISTRICT OF CALIFORNIA

SAN JOSE DIVISION
SOFTVAULT SYSTEMS, INC. N@. oy N B A
M CV2-05544
Plaintiff, = .
COMPLAINT FOR
Vs. INFRINGEMENT OF
U.S. PATENT NOS. 6,249,868
RESEARCH IN MOTION AND 6,594,765
CORPORATION.
Defendant. JURY TRIAL DEMANDED

COMPLAINT FOR INFRINGEMENT OF PATENT

O 00 3 & »n b~ W N =

[\ TR S YR NG Y NG Y VS U e S T -

- -

Plaintiff SOFTVAULT SYSTEMS, INC. files its Complaint against

Defendant RESEARCH IN MOTION CORPORATION, alleging as follows:
THE PARTIES

1. Plaintiff SOFTVAULT SYSTEMS, INC. (“SOFTVAULT”) is a
corporation organized and existing under the laws of the State of Washington with
its principle place of business in the State of Washington.

2. Upon information and beliesf RESEARCH IN MOTION
CORPORATION (“DEFENDANT” or “RIM”) is a corporation organized and
existing under the laws of the State of Delaware, with its principal place of
business in Irving, Texas. Defendant may be served with process through its
registered agent CT Corporation System, 818 West 7™ Street, Los Angeles, CA
90017-3407.

JURISDICTION AND VENUE

3. This is an action for infringement of United States patents. This Court
has exclusive jurisdiction of such action under Title 28 U.S.C. § 1338(a).

4. Upon information and belief, RIM is subject to personal jurisdiction
by this Court. RIM has committed such purposeful acts and/or transactions in the
State of California that it reasonably knew and/or expected that it could be hailed
into a California court as a future consequence of such activity. RIM makes, uses,
and/or sells infringing products within the Northern District of California and has a
continuing presence and the requisite minimum contacts with the Northern District
of California, such that this venue is a fair and reasonable one. Upon information
and belief, RIM has transacted and, at the time of the filing of this Complaint, is
continuing to transact business within the Northern District of California. For all
of these reasons, personal jurisdiction exists and venue is proper in this Court

under 28 U.S.C. §§ 1391(b)(1), (2) and (c)(2) and 28 U.S.C. § 1400(b).

COMPLAINT FOR INFRINGEMENT OF PATENT

O 00 3 O W b W N -

NN N N N N o e e e e e ek e e e

PATENTS-IN-SUIT
5. On June 19, 2001, United States Patent No. 6,249,868 BI (“the ‘868
Patent”) was duly and legally issued for “METHOD AND SYSTEM FOR
EMBEDDED, AUTOMATED, COMPONENT-LEVEL CONTROL OF
COMPUTER SYSTEMS AND OTHER COMPLEX SYSTEMS.” A true and
correct copy of the ‘868 Patent is attached hereto as Exhibit A and made a part

hereof.

6. On July 15, 2003, United States Patent No. 6,594,765 B2 (“the 765
Patent”) was duly and legally issued for “METHOD AND SYSTEM FOR
EMBEDDED, AUTOMATED, COMPONENT-LEVEL CONTROL OF
COMPUTER SYSTEMS AND OTHER COMPLEX SYSTEMS.” A true and
correct copy of the ‘765 Patent is attached hereto as Exhibit B and made a part
hereof.

7. The ‘868 Patent and the ‘765 Patent are sometimes referred to herein
collectively as “the Patents-in-Suit.”

8. As it pertains to this lawsuit, the Patents-in-Suit, very generally
speaking, relate to a method and system of protecting electronic, mechanical, and
electromechanical devices and systems, such as for example a computer system,
and their components and software from unauthorized use. Specifically, certain
claims of the ‘868 and ‘765 Patents disclose the utilization of embedded agents
within system components to allow for the enablement or disablement of the
system component in which the agent is embedded. The invention disclosed in the
Patents-in-Suit discloses a server that communicates with the embedded agent
through the use of one or more handshake operations to authorize the embedded
agent. When the embedded agent is authorized by the server, it enables the device

or component, and when not authorized the embedded agent disables the device or

component.

COMPLAINT FOR INFRINGEMENT OF PATENT

O 00 3 & »n H W DD o=

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

FIRST CLAIM FOR RELIEF
(Patent Infringement)

9. SoftVault repeats and realleges every allegation set forth above.

10. SoftVault is the owner of the Patents-in-Suit with the exclusive right
to enforce the Patents-in-Suit against infringers, and collect damages for all
relevant times, including the right to prosecute this action.

11. Upon information and belief, RIM is liable under 35 U.S.C. §271(a)
for direct infringement of the Patents-in-Suit because it manufactures, makes, has
made, uses, practices, imports, provides, supplies, distributes, sells, and/or offers
for sale products and/or systems that practice one or more claims of the Patents-in-
Suit.

12. More specifically, RIM infringes the Patents-in-Suit because it
manufactures, makes, has made, uses, practices, imports, provides, supplies,
distributes, sells, and/or offers for sale products and systems which prevent
unauthorized use of a computer system through the ability to enable or disable the
operation of a device’s components through an authorization process performed by
an embedded agent in the component device and a server. By way of example
only, RIM’s Mobile Fusion Studio, Blackberry Device Service, and Blackberry
Enterprise Server, combined with its Blackberry mobile phones and Playbook
tablets, at a minimum, in the past directly infringed and continues to directly
infringe at least Claims 1 and 44 of the ‘868 Patent, as well as at least Claim 9 of
the ‘765 Patent.

13. RIM’s Mobile Fusion Studio includes the capability to enable or
disable a mobile device, such as a smart phone or tablet, to prevent misuse of the
product by rogue devices and/or rogue servers. The Mobile Fusion Studio includes
a Mobile Fusion client application that is installed on a mobile device and
communicates with a Mobile Fusion server. This communication includes a series

of message exchanges constituting a handshake operation between the Mobile

COMPLAINT FOR INFRINGEMENT OF PATENT

O 00 3 & W A W N =

N NN N N N N N N o e e e e e et s e
0 N N W BAWN = O O 00NN BAWNN= O

Fusion client software and the Mobile Fusion server. Through these exchanges the
Mobile Fusion server can authenticate and authorize a device in which the Mobile
Fusion client is embedded. When the Mobile Fusion client is authorized by the
Mobile Fusion server, the mobile device operates normally and when the Mobile
Fusion client is not authorized, the mobile device is remotely locked and disabled.

14. RIM’s Blackberry Enterprise Server, Blackberry Enterprise Server
Express and Blackberry Device Service (“Blackberry Server”) include the
capability to activate a mobile device such as a mobile phone or tablet. Each
Blackberry mobile phone and Blackberry Playbook tablet includes client software
that communicates with a Blackberry Server. This communication includes a series
of message exchanges constituting a handshake operation between the client
software and the Blackberry Server. Through these exchanges the Blackberry
Server can authenticate and activate a device in which the client software is
embedded. When the client software is authorized by the Blackberry Server, the
mobile device is activated and operates normally. When the client software is not
authorized, the mobile device is not activated and does not operate normally.

15. RIM has actual notice of the Patents-in-Suit at least as early as the
filing of this Complaint.

16. SoftVault has been damaged as a result of RIM’s infringing conduct.
RIM is, thus, liable to SoftVault in an amount that adequately compensates
SoftVault for RIM’s infringement, which, by law, cannot be less than a reasonable

royalty, together with interest and costs as fixed by this Court under 35 U.S.C. §
284.

COMPLAINT FOR INFRINGEMENT OF PATENT

O 60 ~N O »n b~ W N —-

N N N N N N N N N = s e e e e e e i e
00 N N U AW N = O OV 00NN AW N= O

- -

PRAYER FOR RELIEF

SoftVault requests that the Court find in its favor and against RIM, and that

the Court grant SoftVault the following relief:

a.

Judgment that one or more claims of the Patents-in-Suit have been
infringed, either literally and/or under the doctrine of equivalents, by
RIM;

Judgment that RIM account for and pay to SoftVault all damages to
and costs incurred by SoftVault because of RIM’s infringing activities
and other conduct complained of herein;

That RIM, its officers, agents, servants and employees, and those
persons in active concert and participation with any of them, be
permanently enjoined from infringement of the Patents-in-Suit. In the
alternative, if the Court finds that an injunction is not warranted,
SoftVault requests an award of post judgment royalty to compensate
for future infringement;

That SoftVault be granted pre-judgment and post-judgment interest on
the damages caused to it by reason of RIM’s infringing activities and
other conduct complained of herein;

That this Court declare this an exceptional case and award SoftVault
its reasonable attorney’s fees and costs in accordance with 35 U.S.C.
§ 285; and

That SoftVault be granted such other and further relief as the Court
may deem just and proper under the circumstances.

JURY DEMAND

Plaintiff hereby requests a trial by jury pursuant to Rule 38 of the Federal
Rules of Civil Procedure.

COMPLAINT FOR INFRINGEMENT OF PATENT

O 00 3 & W A W N -

NN NN N N N N = e e e e e e e e e
g\lc\mpwwv—-oxooo\lc\m.nww»—-o

DATED: October 26, 2012.

/s/ Benedict O’Mahoney

Benedict O’Mahoney
gl'E ar No.152447)
RRA LAW
177 Park Avenue, Third Floor
San Jose, California 95113
Telephone 408-299-1200
Facsimile: 408-998-4895
Email: bomahoney@terralaw.com

Attorney for Plaintiff
SOFTVAULT SYSTEMS, INC.

Of Counsel:

Jonathan T. Suder

Corby R. Vowell

Todd Blumenfeld
FRIEDMAN, SUDER & COOKE
Tindall SﬂHMe Warehouse No. 1
604 East 4™ Street, Suite 200
Fort Worth, Texas 76102
Telephone: g 17) 334-0400
Facsmlle (817) 334-0401
Email: jts@fsclaw.com
Email: blumenfeld@fsclaw.com
Email: vowell@fsclaw.com

Edward W. Goldstein
GOLDSTEIN LAW, PLLC

1177 West Loop South, Suite 400
Houston, Texas 77027

Telep hone: 9 13) 877-1515
Facsmlle (713) 877-1737
Email: _goldstem@glmlaw com

COMPLAINT FOR INFRINGEMENT OF PATENT

O 00 ~1 O W»n A~ WD~

N N N N /= o e e e e e e e

COMPLAINT FOR INFRINGEMENT OF PATENT

HEETRR

(T

US006249868B1
a2 United States Patent 10) Patent No.: US 6,249,868 B1
Sherman et al. 45) Date of Patent: Jun. 19, 2001
(54) METHOD AND SYSTEM FOR EMBEDDED, 6,148,333 * 112000 Guedalia el al. ..u.ovrvecrrrene 709219
AUTOMATED, COMPONENT-LEVEL 6,157,953 * 12/2000 Chang et al. e 709225
CONTROL OF COMPUTER SYSTEMS AND 6,158,010 * 12/2000 Moriconi et al. .. e 7137201
OTHER COMPLEX SYSTEMS
* cited by examiner
(75) Inventors: Edward G. Sherman, London (GB);
Mark P. Sherman, Seattle, WA (US);
George M. Reed, Saratoga, CA (US), Primary Examiner—Thomas R. Peeso
Larry Saunders, San Diego, CA (US); (74) Aunorney, Agent, or Firm—Robert W. Bergstrom
Wayne Goldman, Sausalito, CA (US);
Simon Whittie, Gladesville (AU) 7 ABSTRACT
(73) Assignee: Softvault Systems, Inc., Seattle, WA A method and system for protecting and controlling personal
(US) i ’ computers (“PCs”) and components installed in or attached
to PCs. The method and system may be used to protect PCs
(*) Notice: Subject to any disclaimer, the term of this from use after being stolen. An exemplary embodiment of
patent is extended or adjusied under 35 the system includes a server running on a remote computer
U.S.C. 154(b) by 0 days. and hardware-implemented agents embedded within the
circuitry that controls the various devices within a PC. The
(21) Appl. No.: 09/163,094 agents intercept all communications 1o and from the devices
_ into which they are embedded, passing the communications
(22) Filed: Sep. 29, 1998 when authorized to do so, and blocking communications
! s. . when not authorized, effectively disabling the devices.
Related U.S. Application Data Embedded agents are continuously authorized from the
(63) Continuation-in-par of application No. 09/047.975, filed on ~ FemOle server computer by handshake operations imple-
Mar. 25, 1998. mented as communications messages. When the PC is stolen
51) Int. Cl7 6F 9/00 or otherwise disconncglcd from the remote server, the
257; US. Cl 713/168: 71311 62?")113 /230. embedded agents within the PC fail to receive further
- T e ’ 713 /,,0]’_, 380/"5§ authorizations, disable the devices into which they are
(58) Field of Search 80 /”‘.SS‘,713 “’ 68 embedded, and effectively prevent any use of the stolen or
TR T T T s 713 /16'9’ 200, 201 disconnected PC. The method and system may also be used
T to control and manage access 1o software stored within the
(56) References Cited PC and to control and manage operation of hardware and
software components within the PC.
U.S. PATENT DOCUMENTS
6,148,083 * 11/2000 Fieres et al. .oocverrrereeeanrraseens 3807255 73 Claims, 21 Drawing Sheets
318
34 /306
EASS | _A~320
SERVER
ASIC 304
—— ? 0s Q
EMBEDDED| =
316 SCEA CUENT | AGENT , _':’_:} N
- 326
310 302
REMOTE
SERVER
COMPUTER
zs CIRCUIT BOARD
~324

NON-VOLATLE STORAGE DEWICE [522

STORING AUTHORIZATION AND
EMBEDDED AGENT INFORMATION

U.S. Patent Jun. 19, 2001 Sheet 1 of 21

US 6,249,868 B1

126
3 108
{
L
fm
PLEASE ENTER YOUR PASSHORD 122
| | 1
S A
130 128 B7114 7 | —120
]
102
\ - —C<3=K_//2
110
118
104
116

Fig. 1

206

/‘204 /-'208
216
230 f —r
e
25 «rj R rEMORY CONTROLLER 250
240 DISPLAY
P CRCUITRY
) | L oz | (28
} L242 BUS iad porcReD Hzs2
ETHERNET BRIDGE DISK
CARD CRCUTTRY
A |L_~2%6
N 224 [226
Moust | [kevaoar 220
2440 O-1246
CARD CARD
210)

g ‘SN

1602 ‘61 "unf

120 T ys

14 898°6+2°9 SN

/3/8

EASS -
SERVER ~ 520

REMOTE
SERVER
COMPUTER

NON-VOLATILE STORAGE DEVICE
STORING AUTHORIZATION AND
EMBEDDED AGENT INFORMATION

/314

CPU

mva

316

0S

SCEA CLIENT |

Z

322

7

310

EMBEDDED

304

AGENT | —
y

326

7
302

CIRCUIT BOARD

Fig. 3

judjed 'S

1002 ‘61 ung

1Z J0 € PS

14 898°6+T'9 SN

- o

U.S. Patent Jun. 19,2001 Sheet 4 of 21 US 6,249,868 Bl
SUCCESSFUL SEND
HANDSHAKE SAVE ME

420

NOT
AUTHORIZED

AUTHORIZED 408

SUCCESSFUL
422 HANDSHAKE

430

SUCCESSFUL
HANDSHAKE

432

TIME
out

414

SUCCESSFUL
HANDSHAKE

POWER-ON

GRACE PERIOD 404

NON-INITIAL

BACKDOOR POWER UP
MECHANISH /
424

INITIAL
POWER-ON
GRACE PERIOD

428

402

SEND
SAVE ME

INITIAL
POWER UP

410

412

SEND]
SAVE ME jﬁ}gg; 4

- -

U.S. Patent Jun. 19, 2001

Sheet 5 of 21 US 6,249,868 B1
RECEIVE SUCCESSFUL
SAVE ME HANDSHAKE

510

516
504 SUCCESSFUL

HANDSHAKE 574

AGENT

KNOWLEDGE
OF AUTHORIZED

506

UNSUCCESSFUL
518 HANDSHAKE

312
RECEIVE SEND ME

WITH INITIAL PASSWORD
508

\o~520 RECEIVE
s SAVE ME

IGNORANT 502

Fig. 5

EASS SERVER 636
)
6381~ SAVE ME
6401 ABCDEFO1
642 ABCDEFO1
628
620 622 624 g 626
ADDRESS CURRENT 0D ORZED— = 612
6.30—1-{ SGATES01—JERRYOCCD.COM | FFESIACI | T9FE2212 TVES
631 NET210-SUFGELF.GOV | CBBB1ATE | 2217813 |YEs
637-H
633—H 618
616
Fig. 64

EASS EMBEDDED AGENT

634
{

)

CURRENT PASSWORD

ABCDEFO1 604
PREVIOUS PASSWORD
I ABCDEFO1 L —~606
TIME_REMAINING
2:00 —~608
/
602

judared 'S'N

1002 ‘61 "unf

12 30 9 1§

14 898°6+7°9 SN

EASS SERVER
SAVE ME
ABCDEFOH
K== | agcoerot
AUTH- 612
ADDRESS CURRENT OLD ORIZED
SGATE301-JERRYGCCD.COM | FF631ACT | 19FE2212 | YES
NET210-SUE@ELF.GOV | CBBG1ATB | 2217B13A |YES
632+ YAMPLEGY.COM ABCDEFO1 | ABCDEFO1 | NO
({ 618
644 | 646 648
616
Fig. 6B

EASS EMBEDDED AGENT

CURRENT

PASSWORD

L

ABCDEFO1

]

PREVIOUS PASSWORD

ABCDEFO1

TIKE REMAINING

1:99

602

Juaje g SN

1007 ‘61 “unf

1730 L woyug

14 898°6+7°9 SN

ey ‘SN

100Z ‘61 "ung

1T J0 8 194§

EASS SERVER
EASS EMBEDDED AGENT

712

AUTHORIZE
16F3A79——F77
—— 0

16F3879——T706
AUTH-

ADDRESS CURRENT OLD ORIZED 706 CURRENT PASSHORD
SGATE301-JERRYOCCD.COM | FF631AC! | 19FE2212 | YES R ABCDE}%?
NET210-SUEBELF.GOV CBB61A78 | 2217813A | YES PREVIOUS PASSWORD
XAMPLEGX COM ABCDEFO1 | ABCDEFO1 | NO [ABCDEFO!

TIME_ REMAINING
[159]
704

702

Fig. 7

141 898°6+T‘9 SN

710

EASS SERVER
AUTHORIZE
16F3A79-/
16F3A79
AUTH-
ADDRESS CURRENT OLD ORIZED 708
SGATE301-JERRY@CCD.COM | FF631ACT | 19FE2212 | YES
NET210-SUE@ELF.GOV CBB61A78 | 2217813A | YES
XAMPLE@X.COM ABCDEFO1 | ABCDEFO1 | NO
Fig. 7B

EASS EMBEDDED AGENT

16F3A79

-1~714

CURRENT PASSWORD
ABCDEFO1

PREVIOUS_PASSWORD
ABCDEFO1
__TIME_REMAINING

1:59

yudjedq ‘s

100Z ‘61 unf’

17 J0 6 NS

14 898°6¥Z°9 SN

EASS EMBEDDED AGENT

EASS SERVER
CONFIRM
AUTHORIZATION
15F3A79\
ABCDEFO!
16F3A79 718
AUTH- 716
ADDRESS CURRENT OLD ORIZED
SGATE301-JERRYCCD.COM | FF631ACY | 19FE2212 | YES
NET210-SUE@ELF.GOV | CBBGIATS | 2217813A | YES
YAMPLE@X.COM ABCDEFO1 | ABCDEFO1 | NO
702
Fig. 7C

16F3A79

CURRENT PASSWORD

ABCDEFO1
PREVIOUS PASSWORD
ABCDEFO1

TIME _REMAINING
1:59

~720

704

TTEILE RNy

100Z ‘61 “unf

1230 01 14§

194 898°6+7°9 SN

EASS SERVER
K——
163479 {706
AUTH-

ADDRESS CURRENT 0D ORIZED
SGATE301-JERRYGCCD.COM [FFE31ACI [19FE2212 [YES
NET210-SUEGELF.GOV [CBBG1ATS | 2217813A | YES
XANPLE@X.COM 16F3A79_| ABCDEFO1 | NO N

7 [726
722 | 724
Fig. 7D

EASS EMBEDDED AGENT

CONFIRM

AUTHORIZATION

16F3A79

ABCDEF01\

718

716

16F3479

CURRENT PASSWORD

ABCDEFO1

PREVIOUS PASSWORD

L

ABCDEFO1

“TIME_REMAINING

l

1:59

]

uaed ‘SN

1002 ‘61 "unf

1T 10 11 10§

14 898'6+T'9 SN

EASS SERVER
AUTH-
ADDRESS CURRENT OLD ORIZED
SGATE301-JERRYGCCD.COM | FF631ACY | 19FE2212 | YES
NET210-SUE@ELF.GOV CBBO1A78 | 2217813A | YES
XAMPLE@X.COM 16F3A79 | ABCDEFO1 | NO

EASS EMBEDDED AGENT

—

0K

16F3A79
120:00

Fig. 7F

728

16F3A79

CURRENT PASSWORD

ABCDEFD]
PREVIOUS_PASSWORD

| ABCDEF01]

TIME_REMAINING

L 1:58

juajed ‘SN

100T ‘61 "unf

1T 10 21 »g

14 8986429 SN

EASS EMBEDDED AGENT

0K
16F3A79
120:00

736

EASS SERVER
AUTH-

ADDRESS CURRENT OLD ORIZED
SGATE3D1-JERRY@CCD.COM | FF631ACT | 19FE2212 | YES
NET210-SUE@ELF.GOV CBB61ATS | 22178134 | YES
XAMPLE@X.COM 16P3A79 | ABCDEFOI | YES {120:00

(726
7291 730
Fig. 7F

CURRENT PASSWORD

16F3A79

PREVIOUS PASSWORD
ABCDEFO1
TIME REMAINING
120:00 _

I"720

| ~732
1734

judled ‘S

100T ‘61 "unf

1T 30 €1 WYS

14 898°6+7°9 SN

EASS EMBEDDED AGENT

EASS SERVER
AUTHORIZE
AAG1FB3
 — SMB1F
3M61FR3_L 1802
AUTH-
ADDRESS CURRENT OLD ORIZED 804

SGATE301-JERRY@CCD.COM | FF631ACH

19FE2212 | YES

NET210-SUEGELF.GOV

CBB61A78

2217813A | YES

XAMPLE®X.COM

16F3A79

ABCDEFO1 [YES j2:00

801-/

Fig. 84

CURRENT PASSWORD
16F3A79

PREVIOUS PASSWORD
ABCDEFO1
TIME_REMAINING

[200

805

judjed *S'

1002 ‘61 "unf

1730 1 PG

14 898°6+7°9 SN

EASS EMBEDDED AGENT

EASS SERVER
AUTHORIZE
3AA61FB3
JAAG1FB3
AUTH- 30/4
ADDRESS CURRENT OLD ORIZED
SGATE301-JERRY@CCD.COM | FF631AC1 [19FE2212 | YES
NET210-SUEBELF.GOV CBBBIA78 | 22178134 | YES
XAMPLE@X.COM 16F3A79 | ABCDEFOY | YES |2:00
Fig. 8B

SAAB1FB3

CURRENT PASSWORD
16F3A79
PREVIOUS PASSWORD

ABCDEFO1
TIME_REMAINING

2:00

]

1806

judled ‘SN

100T ‘61 "ung

17 10 ST 1aug

14 898°6FZ°9 SN

EASS EMBEDDED AGENT

EASS SERVER
CONFIRM
AUTHORIZATION
810~-3AA61FB3
16F3A79 ~
3AAG1FB3 812
AUTH-
ADDRESS CURRENT ~ OLD ORIZED 808
SGATE301-JERRY@CCD.COM | FF631ACT | 19FE2212 [YES
NET210-SUEBELF GOV CBB61ATS | 22178134 | YES
YAMPLE@X.COM 16F3479 | ABCDEFO1 | YES }1:59
Fig. 8C

SAAG1FB3

CURRENT PASSWORD
16F3A79
PREVIOUS PASSWORD

ABCDEFOI]
TIME_REMAINING
{ 1:59 |

juaje g °S'N

100T ‘61 unp

1740 91 »ayg

19 898°6+T‘9 SN

EASS SERVER
AUTH-
ADDRESS CURRENT _ OLD ORIZED
SGATE301-JERRY@CCD.COM | FF631ACt { 19FE2212 | YES

NET210-SUE@ELF.GOV CBB61A78 | 2217813A | YES
XAMPLE@X.COM 3AABIFB3 | 16F3A79 | YES [1:59
S
814 816

EASS EMBEDDED AGENT

CONFIRM
AUTHORIZATION
3AAB1FB3
16F3A79

Fie. 8D

808

3AA61FB3

CURRENT PASSWORD
16F3A79
PREVIOUS PASSWORD

ABCDEFO1]
TIME_RENAINING
[1559]

judjed 'S'N

1602 ‘61 "unf

1T 30 LI wouS

141 898°6+2°9 SN

EASS EMBEDDED AGENT

EASS SERVER
0K
3AAG1FB3
 e— 120:00\
819
AUTH- 818
ADDRESS CURRENT OLD ORIZED
SGATE301-JERRY@CCD.COM | FF631ACT | 19FE2212 YES
NET210-SUE@ELF.GOV CBB61AT8 | 22178134 | YES
XAMPLE@X.COM 3AA61FB3 | 16F3A70 | YES[1:58
Fig. 8E

3AAB1FB3

CURRENT PASSWORD

[__16F3A7S

PREVIOUS PASSWORD
ABCDEFD1
TIME_REMAINING
1:58

Juared ‘s

1002 ‘61 "unf’

1T J0 81 1S

14 898°6bT°9 SN

EASS SERVER

ADDRESS

AUTH-
CURRENT OLD ORIZED

SGATE301-JERRYBCCD.COM

FF631AC1 | 19FE2212 | YES

NET210-SUEELF GOV

CBBE1A78 | 2217813A | YES

XAMPLE@X.COM

SAAGIFB3 | 16F3A79 | YES

120:00

820

EASS EMBEDDED AGENT

0K
3AAG1FB3
120:00

Fig. 8F

/
818

CURRENT PASSWORD

JAAG1FB3 .

PREVIOUS PASSWORD
16F3A79

TIME_REMAINING
120:00

822
824

judjed ‘S

1002 ‘61 “unf

1T 10 61 ¥WIYS

14 898°6FT°9 SN

EASS EMBEDDED AGENT

SAVE ME
16F3A79
ABCDEFO1

EASS SERVER
AUTH-

ADDRESS CURRENT OLD ORiZED
SGATE301-JERRY@CCD.COM | FF631ACT | 19FE2212 { YES
NET210-SUE@ELF.GOV CBB61A78 | 2217813A | YES
XAMPLE@X.COM SAAGIFB3 | 16F3A79 | YES |120:00

914
I
916
912
Fig. 94

4
906

CURRENT PASSWORD

| 16F3A79

PREVIOUS PASSWORD

ABCDEFD1

TIME_REMAINING
0:20

908
910
904

/
902

judjed ‘SN

1002 ‘61 "unt

17 30 (0T NS

14 898'6HC‘9 SN

EASS EMBEDDED AGENT

EASS SERVER
SAVE ME
1673479
= ABCOEFO!
ATH-
ADDRESS CURRENT OLD ORZED 906
SGATE301-JERRYGCCD.COM | FF31AC! | 19FE2212 YES
NET210-SUEGELF 6OV | CBBB1AT8 | 22178134 |YES
XAMPLEGX.CON 16F3A79 | ABCDEFOT | YES N
914
O
916 | 918
Flg. 98

CURRENT PASSWORD

16F3A79

PREVIOUS PASSWORD

| ABCDEFD

TIHE_REMAINING
0:20

902

judged 'S’

1002 ‘61 "unf

12 Jo 17 1Y

14 898°6¥T°9 SN

US 6,249,868 B1

1

METHOD AND SYSTEM FOR EMBEDDED,
AUTOMATED, COMPONENT-LEVEL
CONTROL OF COMPUTER SYSTEMS AND
OTHER COMPLEX SYSTEMS

RELATED APPLICATIONS

This application is a continuation-in-part of co-pending
U.S. application Ser. No. 09/047,975 that was filed on Mar.
25, 1998.

TECHNICAL FIELD

The present invention relates to control of computer
syslems and other types of complex sysiems al the compo-
nent level and, in particular, 10 a method and system for
securing a complex system by embedding agents within one
or more components of the complex system in order to
control access o components within the complex system.

BACKGROUND OF THE INVENTION

Computer security is a very broad and complex field
within which, during the past several decades, a number of
important sub-fields have developed and matured. These
sub-ficlds address the many different problem arcas in
computer security, employing specialized techniques that
are particular to specific problems as well as general tech-
niques that are applicable in solving a wide range of prob-
lems. The present application concerns a technique that can
be used to prevent the theft and subsequent use of a personal
computer (“PC”) or of various PC components included in,
or attached to, a PC. This technique may make use of certain
security-related techniques which have been employed pre-
viously to address other aspects of computer security, and
this technique may iself be employed 1o address both

computer security problems other than theft as well as

various aspects of computer reliability, computer
administration, and computer configuration. In addition, this
technique may be applied to protecting other types of
complex electronic and mechanical systems as well as
computer software and other types of information encoded
on various types of media.

PCs are ubiquitous in homes, offices, retail stores, and
manufacturing facilities. Once a curiosity possessed only by
a few hobbyists and devoiees, the PC is now an essential
appliance for business, science, professional, and home use.
As the volume of PCs purchased and used has increased, and
as PC technology has rapidly improved, the cost of PCs has
steadily decreased. However, a PC is still a relatively

expensive appliance, especially when the cost of the sofi- s

ware installed on the PC and the various peripheral devices
attached to the PC arc considered. PCs, laptop PCs, and even
relatively larger scrver compuiers have all, therefore,
become attractive targets for thefi.

FIG. 1 illustrates various types of security sysiems com-
monly employed to prevent theft of PCs and PC compo-
nents. A PC 102 is mounted on a table 104 and is connected
10 a keyboard-input device 106 and a display monitor 108.
The PC 102 is physically secured to the table 104 with a
hinged fastening device 110, which can be opened and
locked by inserting a key 112 into a lock 114. The display
monitor 108 is physically attached 10 the table via a cable
116 and cylindrical combination lock 118 system. Serial
numbers 120 or 122 are attached 1o, or imprinted on, the side
of the PC 102 and the side of the displav monitor 108,
respectively. Finally, there is a softwarc-implemented lock
and key system for controlling access to the operating

10

20

N
o

2

system and hence to the various application programs avail-
able on the PC 102. Typically, a graphical password-entry
window 124 is displayed on the screen 126 of the display
monitor 108. in order 10 use the computer, the user types a
password via the keyboard 106 into the password sub-
window 128 of the password-entry window 124. The user
then depresses a keyboard key 1o indicate to a security
program that password entry is complete. As the user types
the password, each letier of the password appears at the
position of a blinking cursor 130. The characters of the
password are either displayed explicitly, or, more
commonly, asterisks or some other punctuation symbol are
displayed to indicate the position within the password in
which a character is entered so that an ohserver cannot read
the password as it is entered by the user. The security
program checks an entered password against a list of autho-
rized passwords and allows further access to the operating
sysicm only when the entered password appears in the list.
In many systems, both a character string identifying the user
and a password must be entered by the user in order to gain
access 1o the operating system.

The common types of security systems displayed in FIG.
1 are relatively inexpensive and are relatively easily imple-
mented and installed. They are not, however, foolproof and,
in many cascs, may not provide even adequatc deterrents 10
a determined thief. For example, the key 112 for the hinged
fastening device 110 can be stolen, or the fastening device
can be pried loose with a crowbar or other mechanical tool.
Aclever thief can potentially duplicate the key 112 or jimmy
the lock 114. The cable 116 can be cut with bolt cutiers or
the cylindrical combination lock 118 can be smashed with a
hammer. Ofien, the combination for the cylindrical combi-
nation fock 118 is writlen down and stored in a file or wallel.
If that combination is discovered by a thief or accomplice to

s theft, the cylindrical combination lock will be useless. In the

situation illustrated in FIG. 1, if the table is not bolied to the
fioor, & thief might only need to pick up the display monitor
108, placc it on the fioor, slide the cable down the table leg
to the floor, and lift the table sufficicntly to slip the cable
frec. While this example might, at first glance, seem silly or
contrived, it is quite often the case thal physical security
devices may themselves be more secure than the sysiems in
which they are instalied, taken as a whole. This commonly
arises when security devices are installed 1o counter certain
obvious threats but when less obvious and unexpecied
threats are ignored or not considered.

While the serial numbers 120 and 122, if not scraped off
or altered by a thief, may serve to identify a PC or compo-
nents of the PC that are stolen and later found, or may serve
as nolice to an honest purchaser of second-hand equipment
that the second-hand equipment was obtained by illegal
means, they are not an overpowering deterrent to a thief who
intends (o use a purloined PC or PC component at home or
10 sell the purloined PC to unsavory third parties.

Password protection is commonly used 10 prevent mali-
cious or unauthorized users from gaining access 1o the
operaling system of a PC and thus gaining the ability to
examine confidential materials, 1o steal or corrupt data. or 1o
transfer programs or data to a disk or 1o another computer

r from which the programs and data can be misappropriated.

Passwords have a number of well-known deliciencies.
Often, users employ easily remembered passwords, such as
their names, their children’s names, or the names of fictional
characters from books. Although not a trivial underiaking, a

5 determined backer can often discover such passwords by

repetitive trial and crror methods. As with the combination
for the cylindrical combination lock 118, passwords are

US 6,249,868 Bl

3.
often written down by users or revealed in conversation.
Even if the operating system of the PC is inaccessible to a
thief who steals the PC, that thief may relatively easily
interrupt the boot process, reformat the hard drive, and
reinstall the operating system in order 1o use the stolen
computer.

More elaborate security systems have been developed or
proposed to protect various types of electrical and mechani-
cal equipment and to protect even living creatures. For
example, one can have installed in a car an electronic device
that can be remotely activated by telephone 10 send out a
homing signal 1o mobile police receivers. As another
example, late model Ford and Mercury cars are equipped
with a special clectronic ignition lock, which is activated by
a liny transmitier, located within a key. As still another
example, small, integrated-circuit identification tags can
now be injected into pets and research animals as a sorl of
internal serial number. A unique identification number is
transmitted by these devices 10 a reading device that can be
passed over the surface of the pet or research animal to
detect the unique identification number. A large variety of
different data encryption techniques have been developed
and are commercially available, including the well known
RSA public/private encryption key method. Devices have

been built that automatically generate computer passwords 2

and that are linked with password devices installed within
the computer 1o prevent hackers from easily discovering
passwords and to keep the passwords changing at a sufficicnt
ratc to prevent extensive access and limit the damage
resulting from discovery of a single password.

While many of these elaborate security sysiems are imple-
mented using highly complex circuitry and software based
on complex mathematical operations, they siill employ, at
some level, the notion of a key or password that is physically
or mentally possessed by a uscr and thus susceptibic to thefi
or discovery. A need has therefore been recognized for a
security system for protecting PCs and components of PCs
from theft or misuse that does not depend on physical or
software implemented keys and passwords possessed by
users. Furthermore. a need has been similarly recognized for
intelligent security systems to protect the software that runs
on PCs and 10 protect other 1ypes of complex electronic and
mechanical sysiems, including automobiles, firearms. bome
entertainment sysiems, and creative works encoded in media
for display or broadcast on home entertainment systems.

SUMMARY OF THE INVENTION

One embodiment of the present invention provides a
security system for protecting a PC and components
installed in or attached to the PC from use afier being stolen.
Agents are cmbedded within various devices within the PC.
The agents arc cither hardwarc-implemented logic circuits
included in the devices or firmware or software routines
running within the devices that can be directed to enable and
disable the devices in which they are embedded. The agents
intercept communications to and from the devices into
which they are embedded, passing the communications
whean authorized to do so in order 10 enable the devices, and
blocking communications when not authorized, effectively
disabling the devices. Embedded agents are continuously
authorized from a remote server computer, which is coupled
to embedded agents via a communications medium, by
handshake operations implemented as communications mes-
sages. When the PC is disconnected from the communica-
tions link to the remote server, as happens when the PC is
stolen, the devices protected by embedded agents no longer
receive authorizations from the remote server and are there-

20

30

33

40

55

60

4

fore disabled. User-level passwords are neither required nor
provided, and the security sysiem cannot be thwarted by
reinstalling the PC’s operating system or by replacing pro-
grammable read only memory devices that store low-level
initialization firmware for the PC.

Aliernative embodiments of the present invention inciude
control and management of software and hardware on a
pay-to-purchase or pay-per-use basis, adaptive computer
systems, and control and security of electrical and electro-
mechanical sysiems other than computers. A computer sys-
tem may be manufactured to include various optional bard-
ware and software components controlled by embedded
agents and initially disabled. When the purchaser of the
computer sysicm later decides to purchasc an optional,

5 preinstalled but disabled component, the manufacturer can

enable the component by authorizing an associated embed-
ded agent upon receipt of payment from the owner of the
system. Similarly, the owner of the computer system may
choose to rent an optional component for a period of time,
and that component can then be authorized for the period of
lime by the manufacturer upon receipt of payment. Software
may be manufactured to require authorization from a server
via an embedded agent either located within the disk drive
on which the software is sored or localed within the
software itself. Computer systems may automatically adjust
their configuration in response 1o changes in workload by
enabling and disabling components via embedded agents.
Finally, systems other than computers, including industrial
machinc tools, processing equipment, vehicles, and fircarms
may be controlled and secured by embedding agents within
one or more components included in the systems.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates various types of security systems com-
monly employed 10 prevent theft of PCs and PC compo-
nents.

FIG. 2 is a block diagram of example internal components
of a PC connected 10 a remote server.

FIG. 3 is a block diagram of example hardwarc and
software components and communicalions pathways that
implement a single embedded agent connected 1o a client
that is, in turn, connected 1o a security authorization server.

FIG. 4 is a state diagram for an example embedded agent.

F1G. 5 is an cxample state diagram for the interaction of
a security authorization scrver with onc embedded agent.

FIG. 6A illustraies an example initiation of the sending of
a SAVE ME message by an embedded agent.

FIG. 6B illustrates an example receipt of a SAVE ME
message by a security authorization server.

FIGS. 7A-F illustrate the handshake operation that imme-
diately follows receipt by an example EASS server of a
SAVE ME message from an example EASS embedded agent
in the Initial Power-On Grace Period state.

FIGS. 8 A-F illustratc a sccond example handshake opera-
tion that follows the original handshake operation of FIGS.
7A-F by some period of time less than the original autho-
rization period.

FIGS. 9A-B illustrate the recovery mechanism that is
employed by an example EASS embedded ageat in the event
that the OK message of FIGS. 8E-F was lost and not
rcceived by the EASS embedded agent.

DETAILED DESCRIPTION OF THE
INVENTION

Onc embodiment of the present invention is an embedded
agenl security system (“EASS”) for protecting a PC, and,

US 6,249,868 B1

5

more particularly, the internal components of a PC, from
misuse or misappropriation. The EASS includes a server
component, one or more embedded agents, and, optionally,
a client component The server component is a centralized
repository and control point that provides authorizations to
agents embedded within PC components and connected 10
the server component via a communications connection. The
server authorizations allow the embedded agents to enable
operation of the components within which the embedded
agents reside for a period of time. The server component
ruos on a scparatc server computer, which is connected by
a communications medium to the PC. An embedded agent is
embedded as a Jogic circuit within the circuitry that controls
operation of an internal component of the PC or is embedded
as a firmware or software routine that runs within the
internal component of the PC. The client component, when
present, runs as a software process on the PC. The client
component of the EASS primarily facilitates communica-
tions between the server component and the various embed-
ded agents. For example, when mulliple embedded agenis
are included in the PC, the client component may serve as
a distribution and colleciion point for communications
between the server component and the muliiple embedded
agents.

Because embeddced agents cnable opcration of the interpal 2

components in which they arc cmbedded, and because
embedded agents require frequent authorizations from the
server component in order to enable the internal
components, if the communications connection between the
server component and an embedded agent is broken, the
internal component in which the embedded agent resides
will be disabled when the current period of authorization
expires. The communications connection between the server
and all embedded agents within the PC will be broken when
the PC is powered down or disconnected from the external
communications medivm by which the PC is connected to
the server. Thus, any attempt to steal the PC will result in the
theft of a PC that will not be operablc once the current period
of authorization expires. In order to subsequently operate the
PC, the thief would need to reconnect the PC 1o the server
and invoke either client or server utilities 1o reinitialize the
embedded agents. These utilities are themselves protected
by password mechanisms. The thief cannot circumvent the
embedded agents by reinstalling the operating system or by
replacing programmable read only memories (“PROMs”).
The stolen PC is therefore essentially worthless 1o the thief,
and, perhaps more imporiant, the data stored within the PC
is inaccessible 10 the thief as well as 10 any other party.

Certain implementations of this embodiment may rely on
one or more internal password identification mechanisms.
However, unlike the other well-known sccurity systems
discussed above, the user of a PC protected by the EASS
does not need 1o possess a password and is, in fact, not
allowed to know or possess the passwords used internally
within the EASS.

In a preferred implementation of this embodiment, the
server and client components are implemented in software
and the embedded agents are implemented as hardware logic
circuits. However, all three of these components may be
implemented either as software routines, firmwave routines,

hardware circuits, or as a combination of software, firmware,
and bardware.

EASS Hardware and Software Configuration

FIG.2 is ablock diagram of example internal components
of a PC connecied 1o a remote server. The remote server 202

30

40

4

n

6

is connected to the PC 204 via a connection 206 that
represents a local arca network which is possibly itself
connected 10 a wide area network and which supports one of
any number of common network protocols or combinations
of protocols 10 transfer messages back and forth between the
server component 202 and the PC 204. Messages may be
transmitied, for example, via the Internet. The PC 204 is
connected 10 an external output device, in this case a display
monitor 208, and to two input devices, a mouse 210 and a
keyboard 212. Internal components of the PC include a
central processing unit (*CPU”) 214; a random access
memory 216; a system controller 218; a hard disk 220; and
a number of device controllers 222, 224, 226, 228, and 230
connecled 10 the system controller 218 directly through a
high speed bus 232, such as a PCI bus, or through a
combination of the high speed bus 232, a bus bridge 234,
and a low specd bus 236 such as an ISA bus. The CPU 214
is connected 1o the system controller 218 through a special-
ized CPU bus 238 and the RAM memory 216 is connected
10 the systern controller 218 through a specialized memory
bus 240. FIG. 2 represents onc possible simple configuration
for the internal components of a PC. PCs having different
numbers or types of components or employing different
connection mechanisms other than PCI or ISA buses may
have quite different internal configurations.

The device controllers 222, 224, 226, 228, and 230 arc
normally implemented as printed circuit boards, which
include one or more application specific imegrated circuits
("ASICs”) 242, 244, 246, 248, and 250. The ASICs, along
with firmware that is normally contained in various types of
ROM memory on the printed circuit boards, implement both
a communications bus interface and a command interface.
The communications bus interface allows for data and
message communication with operating system routines that

; run on the CPU 214. The command interface enables the

operating sysiem to control the peripheral device associated
with the device controlier. For example, the hard disk 220
compriscs a number of physical platters on which data is
storcd as tiny magnetized regions of the iron oxide surface
of the platiers (not shown), a motor for spinning the platters
(not shown), and a printed circuit board 228 which imple-
ments circeitry and firmware routines that provide a high-
level interface to operating system drivers. In modern disks,
there is often a printed circuit board that includes an ASIC
that is packaged within the disk as well as a printed circuit
board card that is conpecied via a bus to other internal
components of the PC, including the system controller 218
and the CPU 214.

Programs that run on the CPU 214, including the oper-
ating system and the EASS client, arc permanently stored on
a bard disk 252 and are transiently stored in RAM 254 for
execution by the CPU 214. Logic circuitry that implemems
the embedded agents of the EASS is included within the
ASICs thal implement the various device controllers 242,

s 244, 246, 248, and 250. The device controller may control

such devices as optical disk devices, tape drives, modems,
and other data sources and communications devices. EASS
embedded agents can be additionally included within the
circuitry that implements RAM 216, the system controller
218, and even the CPU 214. One skilled in the art will
recognize that any circuit in which communications can be
intercepted may reasonably host an embedded agent and that
many other locations may therefore host embedded agents.
Further. a PC 204 may include oaly a single embedded agent
or may include a number of EASS embedded agents.

FIG. 3 is a block diagram of cxample hardware and
software components and communications pathways that

US 6,249,868 Bl

7

implement a single embedded agent connected 1o a client
which is, in turn, connccied 10 a security authorization
server. In one¢ embodiment, the EASS embedded agent 302
is a logic circuit embedded within an ASIC 304 which is
included on 2 printed circuit board 306 that implements a
particular device controller. The device controller is con-
nected through one or more internal communications buses
308 to an EASS client program 310 implemented as a driver
within the operating system 312 running on the CPU 314 of
the personal computer. The CPU 304 is, in turn, connecled
through one or more internal buses, such as a PCI bus, and
external communication lines, such as a LAN or a LAN
combined with a WAN 3186, to the server computer 318. The
components of the server computer that implement the
EASS server include an EASS server program 320 and a
non-volatile storage device 322 in which the EASS server
program 320 stores authorization and embedded agent infor-
mation. The EASS server program 320 exchanges informa-
tion with the non-volatile storage device 322 via internal
buses 324 of the server computer 318. There are a variety of
ways in which the embedded agent and authorization infor-
mation can be stored by the EASS server 320 on the
non-volatile storage device 322. In one implementation of
the described embodiment, this data is stored within a
commercial databasc management sysicm, such as z rcla-
tional database.

Messages and commands that are passed to the device
controller 306 for a particular internal or peripheral device
over the communications bus 308 first pass through the
EASS embedded agent logic 302 before entering the ASIC

circuitry 304 that implements the device controller. The

EASS embedded agent 302 is associated with a number of
non-volatile registers 326 that store authorization state infor-
mation. When the embedded agent has been authorized by
an EASS server 320, or during a short grace period follow-
ing power up, the EASS embedded agent passes messages
and commands through to the ASIC 304 that implements
normal message bandling and the device controller.
However, when the EASS embedded agent 302 is not
authorized by thc EASS server 320, or when an initial
power-on grace period has expired, the EASS embedded
agent blocks messages and commands to the ASIC 304
thereby disabling the device controlied by the device con-
troller 306. The EASS embedded agent thus serves as a
hardware-implemented control point by which a device is
enabled or disabled. Authorization messages pass from the
EASS server 320 through communications pathways 316
and 308 10 the EASS embedded agent 302. The EASS
embedded agent 302 can also initiate a message and pass the
message through patbways 308 and 316 1o the EASS server
320. For example, the EASS embedded agent 302 may
request authorization from the EASS server 320.

In the described embodiment, the EASS client 310 facili-
tales communications between the EASS server 320 and the
EASS embedded agent 302. When a PC includes more than
one EASS embedded agent, the EASS client 310 handles
routing of messages from the EASS server 320 10 individual
EASS embedded agents 302 and collects any messages
initiated by EASS embedded agents 302 and forwards them
to the EASS scrver 320. In addition, the EASS client 310
may support a2 small amount of administrative functionality
on the PC that allows the EASS to be reinitialized in the
event of loss of connection or power failure. The EASS
client 310 may not be a required component in aliernative
embodiments in which an EASS server 320 communicates
directly with EASS embedded agents 302.

In aliemnative embodiments, the EASS server may com-
municate with EASS embedded agents by a communications

40

w
“n

60

8

medium based on transmission of optical or radio signals
rather than on electrical signals. Moreover, alternate
embodiments may employ multiple EASS servers that may
be implemented on remote computers or that may be
included within the same computer that hosts the EASS
embedded agents.

EASS Server and Embedded Agent State
Transitions

FIG. 4 is a state diagram for an example embedded agent.
FIG. 4 shows four different states that an EASS embedded
agent may occupy: (1) an Initial Power-On Grace Period
statc 402; (2) a Power-On Grace Period statc 404; (3) an
Authorized stale 406; and (4) a Not Authorized state 408.
Transitions between these states arise from three types of
events: (1) a successful handshake between the embedded
agent and the EASS server that results in transfer of an
authorization by the EASS server 10 the embedded agent to
permil operation of the device associaled with the EASS
embedded agent for some period of time; (2) a time out that
occurs when the EASS embedded agent has exhausted its
current authorization period prior 1o receiving a subsequent
re-authorization from the EASS server; and (3) a special
back-door mcchanism that allows an entity such as the
EASS client to reinitialize an EASS embedded agent so that
the EASS embedded agent can reestablish contact with an
EASS server following interruption of a previous connec-
tion.

Following an initial power up 410 of the device hosting an
EASS embedded agent, the EASS embedded agent enters an
Initial Power-On Grace Period 402. The Initial Power-On
Grace Period allows operation of the device controlled by
the EASS embedded agent for some short period of time
following power up of the PC necessary for initialization of
the PC that contains the device and embedded agent and
allows for establishmem of contact between the EASS
embedded agent and an EASS server. When in the Initial
Power-On Grace Period 410, the EASS embedded agent
contains one of a certain number of initial passwords that are
recognized by EASS servers as belonging 10 EASS embed-
ded agents in the Initial Power-On Grace Period. These
initial passwords allow an EASS server ta distinguish a valid
request for handshake operation from an attempt to solicit
authorization by an embedded agent that has been previ-
ously authorized by an EASS scrver. In the latter case, the
embedded agent may well be hosted by a stolen or misused
device. From the Initial Power-On Grace Period state, the
EASS embedded agent may send a solicitation message, for
example, a “SAVE ME” message 1o an EASS server to
announce that the EASS embedded agent has been powered
up for the first time, as indicated by transition arrow 412, and
to solicit 2 handshake operation. Sending of the SAVE ME
solicitalion message does not, by itself, cause a state tran-
sition. When an EASS server receives a SAVE ME message
from an EASS embedded agent, the EASS server undertakes
sending of an authorization to the EASS embedded agent
through a handshake mechanism. to be described below. The
handshake may eitber fail or succeed. If a handshake fails,
thc EASS cmbedded agent remains in the state that it
occupied prior to initiation of the handshake.

When an EASS embedded agent is in the Initial Power-On
Grace Period, 2 successful handshake operation results in the
EASS embedded agent transitioning 414 10 an Authorized
state 406. At regular intervals, the EASS server continues to
rcauthorize the EASS embedded agent through successive
bandshake opcrations 416 which result in the EASS cmbed-
ded agent remaining in the Authorized state 406. In the

US 6,249,868 B1

9

Authorized state 406, the EASS embedded agent passes
through commands and data to the device that it controls
allowing that device to operate normally. If, for any number
of reasons, the EASS embedded agent does not receive
reauthorization prior to the expiration of the current autho-
rization that the embedded agent has received from an EASS
server, a lime out occurs causing transition 418 of the EASS
embedded agent to the Not Authorized state 408.

In the Not Authorized state 408, the EASS embedded
agent blocks commands and data from being transmitted to
the device controlled by the EASS embedded agent, cffec-
tively disabling or shutting down the device. Aliernatively,
the EASS embedded agent may actually power down a
device that can be powered down independently from other
internal components of the PC. When in the Not Authorized
state 408, the EASS embedded agent may send a SAVE ME
message 420 to an EASS server. Sending of this message
does nol, by itself, cause a state transition, as indicated by
arrow 420. However, if an EASS embedded agent receives
the SAVE ME message and initiates a handshake operation
that is successfully concluded, the EASS embedded agent
transitions 422 from the Not Authorized state 408 back to the
Authorized state 406.

The EASS embedded agent and the device that the EASS
embedded agent controls can be powered up any number of
times following an initial power up. The EASS embedded
agent slores enough information in 2 oumber of non-volatile
registers associated with the EASS embedded agent (c.g.,
registers 326 in FIG. 3) 1o differentiate a normal or non-
initial power up from an initial power up. Following a
noo-initial power up 424, the EASS embedded agent tran-
sitions 426 to a Power-On Grace Period state 404. When
occupying the Power-On Grace Period state 404, the EASS
embedded agent may send a SAVE ME message 10 an EASS
server. The sending of the SAVE ME message 428 does not,

by itself, cause a state transition, as indicated by arrow 428.

The Power-On Grace Period lasts a short period of time
sufficient for the PC to be booted and all of the internal
components to be initialized and for the EASS embedded
agents controlling thosc components 10 cstablish contact
with an EASS scrver. If an EASS server, upon receiving the
SAVE ME message, successfully compleles a bandshake
operation, the EASS embedded agent transitions 430 from
the Power-On Grace Period 404 10 the Authorized state 406.
If a successful handshake operation is not completed before
the short Power-On Grace Period authorization period
expires 432, the embedded agent transitions 432 from the
Power-On Grace Period 404 10 the Not Authorized state 408.

A special mechanism is provided for reinitialization of an
EASS embedded agent following normal power on. That
mechanism is referred 1o as the “back door” mecbanism. The
back door mechanism may be initiated, at the direction of a
user or administrator, by an EASS client running on the
same PC that includes the embedded agent, or may be
initiated by an EASS server upon discovery by the EASS
server of a failed or interrupted connection. When the EASS
embedded agent receives a message that implements the
back door mechanism, the EASS embedded agent transi-
tions 434 from the Power-On Grace Period 404 back 1o the
Initial Power-On Grace Period 402. In alternative
embodiments, the back door mechanism might allow for
transitions from either of the other two states 406 and 408
back to the Initial Power-On Grace Period state. In more
complex embodiments, the back door mechanism might
allow for transitions 1o states other than the Initial Power-On
Grace Period.

FIG. 5 is an cxample state diagram for the interaction of
a security authorization server with one embedded agent.

25

30

45

65

10
With respect 10 an EASS embedded agent, the EASS server
may occupy any one of three states at a given instant in lime:
(1) the EASS server may be in an Ignorant of Agent state
502; (2) the EASS server may be in a Knowledgeable of
Agent state, aware of but not having authorized the agent
504; and (3) the EASS server may be in an Agent Authorized
slate 506. Initially, an EASS server is ignorant of the
embedded agent, and thus occupies the Ignorant of Agent
state 502. When the EASS server receives a SAVE ME
message from the EASS embedded agent that is in the Initial
Power-On Grace Period statc (402 in FIG. 4), the EASS
scrver transitions 508 from the Ignoram of Agent statc 502
to the Knowledgeable of Agent state 504. As part of this
transition, the EASS server typically makes an entry into a

5 database or enters a record into a file that allows the EASS

server to preserve its awareness of the EASS embedded
agenl. The EASS server may receive SAVE ME messages
from the EASS embedded agent when occupying either the
Knowledgeable of Agent state 504 or the Agent Authorized
state 506. As indicaled by arrows 510 and 512, receipt of
SAVE ME messages by the EASS server in either of states
504 and 506 does not, by itself, cause a stale transition.

The EASS server may initiate and complete a successful
handshake operation with the EASS embedded agent while
the EASS server occupies the Knowledgeable of Agent state
504 with respect to an agent. Completion of a successful
handshake operation causes the EASS server to transition
$§14 from the Knowledgeable of Agent state 504 1o the Agent
Authorized state 506 with respect to the agent. This transi-
tion may be accompanied by the saving of an indication in
a database or a file by the EASS server that indicates that the
embedded agenl is authorized for some period of time.
When occupying the Agent Authorized state, the EASS
server may continue to initiate and complete successful
handshake operations with the embedded agent and, by
doing so, continue 10 occupy the Agent Authorized siate.
However, if a handshake operation is unsuccessful, the
EASS scrver transitions 518 from the Agent Authorized statc
506 back to the Knowledgeable of Agent state 504.

In some embodiments of the present invention, there may
be an additional transition 520 from the Knowledgeable of
Agent staie 504 back to the Ignorant of Agent state 502. This
transition corresponds to a purging or cleaning operation
that allows an EASS server to purge database entries or file
records corresponding 10 a particular EASS embedded agent
il the EASS server is unsuccessful in authorizing that EASS
embedded agent for some period of time. Such a purging
operation allows the EASS server to make room in a
database or file to handle subsequent entries for EASS
cmbedded agents that announce themsclves using SAVE ME
messages from an Initial Power-On Grace Period statc.

EASS Messages

FIGS. 6A-9B illustrate details of the sending and receiv-
ing of SAVE ME messages and of the EASS server-initiated
handshake operation. In each of these figures, example
contents of the non-volatile registers associated with an
EASS embedded agent, contents of a2 message, and contents
of a portion of the database associated with an EASS server
are shown. FIG. 6A will be pumerically labeled and
described in the discussion below, but the labels will be
repeated in FIGS. 6B-9B oply when the labels are relevant
to an aspecl of the EASS in the figure referenced in the
discussion of the figure.

FIG. 6A illustratcs initiation of the sending of a SAVE ME
message by an EASS embedded agent. The EASS embedded

US 6,249,868 B1

1

agent 602 is associaled with three non-volatile registers that
contain: (1) the current password 604; (2) the previous
password 606; and (3) the time remaining for the current
authorization period 608. Passwords may comprise com-
puter words of 56 bits, 64 bits, or a larger number of bits that
provide a sufficiently large number of unique initial pass-
words. The direction of propagation of the SAVE ME
message is indicated by arrow 610. The SAVE ME message
612 being transmitied is displayed along with its informa-
tional content 614. The EASS server 616 contains a repre-
sentation of a portion of a database that contains information
about EASS embedded agent authorizations 618. This data-
base contains columns that indicate the communications or
petwork address of the EASS embedded agent 620, the
EASS cmbedded agent’s current password 622, the EASS
embedded agent’s previous password 624, and an indication
of whether the EASS embedded agent is currently autho-
rized or not 626. Additional or alternative columns may be
present. For example, the next column 628 is used in
subsequent figures to store the amount of time for which the
EASS embedded agent is authorized. Each row in the
databasc 630-633 represents one particular EASS embed-
ded agent. Rows 630 and 631 contain information for
previously authorized EASS embedded agents (not shown).
EASS cmbedded agent 602 of FIG. 6A is in the Initial

Power-On Grace Pcriod staic (402 of FIG. 4) and the EASS ,

server 616 of FIG. 6A is, with respect to the embedded agent
602, in the Ignorant of Agent state (502 of FIG. 5). Recl-
angular inclusions 634 and 636 represent the implementa-
tion of, and any volatile siorage associated with, the EASS
embedded agent and the EASS server, respectively.

In one embodiment, when the EASS embedded agent 602
is in the Initial Power-On Grace Period, it has an initial time
remaining period of two minutes, as indicated by the con-
tents of the time remaining non-volatile register 608. This
initial time remaining period is chosen 1o be sufficient for the
EASS embedded agent 602 10 establish a connection with
the EASS server 616, 10 solicit a handshake operation, and
to complete the solicited handshake operation and may vary
in duration for different types of computers. Both the current
password register 604 and the previous password register
606 contain a default initial password that is recognized by
EASS servers as corresponding 1o an EASS embedded agent
in the Initial Power-On Grace Period state. It should be noted
that there may be a great number of different such default
passwords. In the described embodiment, the circuitry that
implements the EASS embedded agent notes that the autho-
rization lime remaining is two minutes, and that it is
therefore pecessary for the EASS embedded agent 602 to
send a SAVE ME message 612 to an EASS server to request
continuation of authorization. Thus, the EASS embedded
agent 602 iniliates sending of the SAVE ME message 612.

The SAVE ME message 612 comiains an indication or
operation code 638 designating the message as a SAVE ME
message, the contents of the current password register 640,
and the contents of the previous password register 642. In
the case of an EASS embedded agent in the Initial Power-On
Grace Period state, both the current password and previous
password registers contain the same initial password in the
present embodiment. Alternative embodiments might use
difierent initial current and previous passwords. In general,
sending both the current password and the previous pass-
word provides sufficient information for the EASS server
that receives the SAVE ME message to cortect any errors or
discrepancies that may have arisen during a previous failed
bandshake. An cxample of a recovery from a failed hand-
shake opcration will be described below with reference 1o
FIGS. 9A-B.

20

35

46

45

60

12

FIG. 6B illustrates receipt of a SAVE ME message by an
EASS scrver. In this casc, the EASS scrver 616 was, prior
to receipt of the SAVE ME message, in the Ignorant of Agent
state (502 of FIG. 5) with respect 1o the EASS embedded
agent 602. Receipt of the SAVE ME message 612 causes the
EASS server 616 to transition to the Knowledgeable of
Agent state (504 of FIG. 5). In making this transition, the
EASS server 616 enters information gleaned from the SAVE
ME message 612 into row 632 of the database 618 associ-
aled with the EASS server 616. The address from which the
message was received can be determined from fields con-
tained within a message header (not shown in F1G. 6B). This
address may be the communications address of an individual
EASS embedded agent, a combination of the communica-
tions address of the client and an internal identification
number of the device hosting the EASS embedded agent, or
some other unique identificr for the EASS embedded agent
that can bc mapped to a communications address. The
details of the formats of message headers are specific to the
particular types of communications mechanisms and imple-
mentations. In ‘this example, the addresses are stored as
Internet addresses. The stored Internet address is the address
of the EASS client running on the PC in which the EASS
embedded agent is resident. This address may be enhanced
by the EASS server 616 by the addition of characters to the
address or subfields within either the address or in the
message header 1o provide sufficient information for the
receiving EASS client 1o identify the particular EASS
embedded agent to which the message is addressed.
Alternatively, a different address might be established for
cach EASS cmbedded agent or an internal address ficld
might be included in cach message scnt from the EASS
server 10 an EASS client that further specifies the particular
EASS embedded agent 10 which the message is addressed.
Thus, receipt of the SAVE ME message has allowed the
EASS server 616 10 slore the address “example@x.com”
632 10 identify the EASS embedded agent 602 from which
the message was received, 10 store the current and previous
passwords 644 and 646 taken from the received SAVE ME
message 612, and 10 store an indication that the EASS
embedded agent 602 is not authorized 648,

FIGS. 7A-F illustrate the handshake operation that imme-
diately follows receipt by an example EASS server of a
SAVE ME message from an example EASS embedded agent
in the Initial Power-On Grace Period state. The handshake
operation is ipitiated, as shown in FIG. 7A, by the EASS
server 702. The EASS server 702 generates a new, non-
initial password for the EASS embedded agent 704 and
stores the new password in volatile memory 706. The EASS
server then sends an authorization message 708, for example
an “AUTHORIZE” message, to the EASS embedded agent
704 thai contains the newly gencrated password 710 along
with an indication 712 that this is an AUTHORIZE messagc.

FIG. 7B illustrates receipt of an example AUTHORIZE
message by an example EASS embedded agent. The EASS
embedded agent 704 stores the newly generated password
710 contained in the AUTHORIZE message 708 into a
volatile memory location 714 implemented in the circuitry
of thc EASS embedded agent 704.

FIG. 7C illustrates sending, by an example EASS embed-
ded agent, of an authorization confinnation message, for
example a “CONFIRM AUTHORIZATION" message. The
EASS embedded agent 704 sends 2 CONFIRM AUTHO-
RIZATION message 716 back 1o the EASS server 702 from

s which an AUTHORIZE message was received. The CON-

FIRM AUTHORIZATION message 716 contains the new
password sent in the previous AUTHORIZE message by the

(9

US 6,249,868 Bl

13
EASS server 718 as well as the contents of the current
password register 720. The CONFIRM AUTHORIZATION
message confirms receipt by the EASS embedded agent 704
of the AUTHORIZE message 708.

FIG. 7D illustrates receipt of the CONFIRM AUTHORI-
ZATION message 716 by an example EASS server. The
EASS server 702 updates the current password and previous
password 722 and 724 within the associated database 726 10
refiect the contents of the CONFIRM AUTHORIZATION
message 716 after checking to make sure that the new
password returned in a CONFIRM AUTHORIZATION
message is identical to the in-memory copy 706 of the new
password. If the new password contained in the CONFIRM
AUTHORIZATION message is different from the new pass-
word stored in memory 706, then the handshake operation
has failed and the EASS server 702 undertakes a new
handshake operation with the EASS embedded agent 704.

FIG. 7E illustrates sending by the EASS server of a
completion message, for example an “OK” message, in
response 1o receipt of the CONFIRM AUTHORIZATION
message in order to complete the handshake operation. The
EASS server 702 prepares and sends an OK message 728
that contains both the new password and an indication of the
time for which the EASS embedded agent 704 will be
authorized upon receipt of the OK message.

FIG. 7F illustrates receipt of the OK message 728 by an
example EASS embedded agent. Once the EASS server 702
has sent the OK message. the EASS server 702 updates the
database 726 1o indicate that the client is authorized 729 as
well as to store an indication of the time 730 for which the
EASS embedded agent has been authorized. At this point,
the EASS server 702 has transitioned from the Knowledge-
able of Agent state (504 in FIG. 5) to the Agenl Authorized
state (506 in FIG. 5). Upon receipl of the OK message 728,
the EASS embedded agent 704 updates the current password
register 720 to reflect the new password sent to the EASS
embedded agent in the original AUTHORIZE message 708
after placing the contents of the current password register
720 into the previous password register 732. The EASS
embedded agent 704 also updates the time remaining reg-
ister 734 to reflect the authorization time 736 contained in
the received OK message. At this point, the EASS embedded
agent transitions from the Initial Power-On Grace Period
state (402 in FIG. 4) 10 the Authorized state (406 in FIG. 4).

If the handshake operation fails after sending of the OK
message by the EASS server to the EASS embedded agent,
but prior to reception of the OK message by the EASS
embedded agent, the connection between the EASS embed-

ded agent and the EASS server can be reestablished and s

authorization reacquired by the sending by the EASS
cmbeddcd agent of a SAVE ME message to the EASS scrver.
The SAVE ME message will contain, as thc current
password, the value that the BASS server has stored as the
previous password. From this, the EASS server can deter-
mipe that the previous handshake operation failed, can
update the database 10 reflect the state prior to the failed
handshake operation, and can then reinitiate a new hand-
shake operation.

FIGS. 8A-F illustrate a second handshake operation that
follows the original handshake operation by some period of
time less than the original authorization period. By under-
taking additional handshake operations, the EASS server
801 continues to initiate handshake operations 1o maintain
the EASS embedded agent 805 in the Authorized statc (406
in FIG. 4). The EASS scrver 801 generates a new, non-initial
password 802 and sends this password in an AUTHORIZE

40

45

14

message 804. The EASS embedded agent receives the
AUTHORIZE message 804 and stores the newly gencrated
password in memory 806. The EASS embedded agenm 805
then sends a CONFIRM AUTHORIZATION message 808
back to the EASS server 801 containing both the newly
generated password 810 and the contents of the current
password register 812. Upon receipt of the CONFIRM
AUTHORIZATION message 808, the EASS server 801
updates the database entries for the current and previous
passwords 814 and 816 and then sends an OK message 818
back to the EASS embedded agent 805 that contains the new
password and the ncw time period 809 for which the EASS
cmbedded agent 805 will be authorized. After sending the
OK message 818, the EASS server 801 updates the database
to reflect the new time of authorization 820 and, upon receipt
of the OK message by the embedded agent, the non-volatile
registers of the EASS embedded agent are updated 1o reflect
the new current password and the now previous password,
822 and 824, respectively.

FIGS. 9A-B illustrate the recovery mechanism that is
employed by an exampie EASS embedded agent in the event
that the OK message of FIGS. 8E-F was lost and not
received by the EASS embedded agent. In this case, the time
remaining continues to decrease and the EASS embedded
ageni 902 determines from the time remaining register 904
that sending of a SAVE ME message 906 is pecessary (o
initiale another handshake operation. Because the final OK
message 818 is not received by the EASS embedded agent
902, the values of the current password register 908 and the
previous password register 910 have not been updated and
arc the samc as the values that were established as a result
of the first authorization, as shown in FIG. 7F. However, the
EASS server 912 has updated its internal database 914 10
indicate the new password generated during the previous

s handshake operation 916. Thus, the EASS server database

914 does not refiect the actual state of the EASS embedded
agent 902. However, when the EASS server 912 receives the
SAVE ME message 906, the EASS server 912 can imme-
diately determine that the previous handshake operation did
not successfully complete and can update the current pass-
word entry and the previous password entry 916 and 918 in
the associated database 914 to refiect the actual current state
of the EASS embedded agent 902. Thus, upon receipt of the
SAVE ME message, the EASS server and the EASS embed-
ded agent arc again synchronized, and the EASS server can
initiate a new handshake operation to reauthorize the EASS
embedded agent.

The above-illustrated and above-described siate diagrams
and message passing details represent one of many possible
different embodiments of the present invention. A different
communications protocol with different attendant state dia-
grams and messages can be devised to accomplish the
authorization of EASS embedded agents by LASS servers.
Depending on the communications pathways employed.,

s different types of messages with different types of fields and

different types of header information may be employed.
Moreover, the EASS embedded agent may contain addi-
lional non-volatile registers and may maintain different
values within the associated non-volatile registers. As one

y example, rather than passing passwords, hoth the EASS

server and each EASS embedded agent may contain linear
feedback registers that electronically generate passwords
from seed values. The communications protocols between
the EASS server and the EASS embedded agenis could

5 cosure that, during transition from thc Initial Power-On

Grace Period statc, the EASS cmbedded agent reccives an
initial seed for its linear feedback register that is also used

US 6,249,868 B1

15
by the EASS server for the EASS server’s linear feedback
register. Rather than passing passwords, both the EASS
embedded agents and the EASS servers can depend on
deterministic transitions of their respective linear feedback
regisiers 10 generate new, synchronized passwords at each
authorization point.

A clever thief who has stolen a PC, who has managed 10
discern the need to establish connections between EASS
embedded agents and an EASS server, and who possesses
the necessary passwords 1o gain eniry to client and server
utilities that cnable a connection between an EASS client
and an EASS scrver to be initialized, will stll fail 1o
overcome the EASS and may, in fact, broadcas! the location
and use of the stolen PC to the EASS. A different EASS
server to which a connection is attempted will immediately
detect the attempt by the thief to connect the stolen PC to the
EASS server by detecting nor-initial passwords in the SAVE
ME message sent by the EASS embedded agent in order to
solicit a handshake operation. The reconnection attiempt will
be readily discernible 10 a securily administrator using
utilities provided to display database contents on the EASS
server. Connection to a different EASS server will fail

20

16

because the EASS embedded agents will power up 1o the
Power-On Grace Period state, rather than the Initial Power-
On Grace Period state. The passwords sent to the different
EASS server will therefore not be identified as initial
passwords. The different EASS server may then notify a
centralized management or administrative facility of the
fraudulent atiempt to connect along with the network
address from which the atiempt was made. An attempt to
connect to the same EASS server will also fail, because the
address of the EASS embedded agents within the PC will
bave changed.

Pseudo-Code Implementation

A pseudo-code example implementation of an example
EASS server and EASS embedded agent is given below.
Although the EASS embedded agent will normally be
implemented as a logic circuit, that logic circuit will imple-
ment in hardware the algorithm expressed below as pseudo-
code. Sofiware and firmware implementations of the EASS
embedded agenl may, in addition, represent alternate
embodiments of the present invention.

1

2

3

4

N

6 type PASSWORD:;

7 type ADDRESS;

8 type TIME;

9

10 const TIME initGrace = 2:00;
11 const TIME saveMe = 0:20;
12

13 class Error

14

18 class DeviceMessage

19

20 Device Message ();
21}

23 class Device

15 Error (int err, ADDRESS add);
}

enum MSG_TYPE {AUTHORIZE. CONFIRM_AUTHORIZE. OK, SAVE_ME, DEVICE};

cnum ERRORS {QUEUED_AND_SAVE_ME. MULTIPLE_OKS_LOST ALARM,
CONFIRM_AUTHORIZE_SYNC, NO_ENTRY, QUEUF_ERROR};

24 {
as Device ();
26 Void enable ();
27 Void disable ()
28 Void send (Device Message & dvmsg):
2 Bool receive (Device Message & dvmsg):
30}
31
32 class Timer
33 {
34 timer (TIME ();
35 void set (TIME t);
36
27
38 class Timerinterrupt
39 {
40 Timerlnterrupt ()
a)
42
3 class TimeServer
44|
45 TimeServer ().
46 TIME nextAuthorizationPeriod (Address add):
47)
48

49 class Messages
50 {

US 6,249,868 B1
17 18

-continued

51
52
53
54
55
50

58
59
60

62
63
64
65
66
67
68
69
70
!
2
73
74
75

n
8
79
80
81
82
83
84
8s
86
87
88
89
90
91
9z
93
04
95
96
97
98
99
100
101
102
102
104
108
106
107
108
109
110
m
112
113
114
115
116
117
118
119
120
12
122
123
124
125
126
127
128
129

Messages()

Boo! getNext ()

MSG_TYPE getType (1

PASSWORD getNewPassword ()

PASSWORD getCurrentPassword ().

PASSWORD getPreviousPassword ().

TIME getTime ():

ADDRESS getAddress ()

Boo! sendAutborize (PASSWORD npwd, ADDRESS add);

Bool sendConfirmAuthorize (PASSWORD npwd, PASSWORD cpwd, ADDRESS add):
Bool sendOK (Time t, PASSWORD npwd. ADDRESS add):

Bool sendSaveMe (PASSWORD cpwd. PASSWORD ppwd. ADDRESS add);

}
class AgentMessages:Messages

DeviceMessage & getDeviceMsg ():

Bool sendDeviceMsg (DeviceMessage & msg):
}

class Passwords

Passwords (

Boo! initialPassword (PASSWORD pwd):

PASSWORD gencrateNewPassword ().

void queue(ADDRESS add. PASSWORD npwd, PASSWORD ppwd):

Bool dequeuc (ADDRESS add. PASSWORD & npwd. PASSWORD & ppwd):

}

class Database
Database();
Boo) newAgent (ADDRESS add. PASSWORD cur. PASSWORD prev. Bod authorized. Time L);
Bool updateAgent (ADDRESS add. PASSWORD cur. PASSWORD prev. Bool authorized. Time 1)
Bool retrieveAgent (ADDRESS add. PASSWORD & cur, PASSWORD & prev, Boo) & Authorized.

TIME & t).

Bool deleteAgent (ADDRESS add):

}

agent (PASSWORD current, PASSWORD previous)

PASSWORD tpwd:

Timer time (init. Grace);
AgentMessages msg ():
Device dv ().
DeviceMessage dvmsg ():
Bool authorized = FALSE;
Bool enabled = TRUE:

while (msg.getNext ())

{
switch (msg.getType ())
{

case AUTHORIZE:
tpwd = msg.getNewPassword ():
msg.sendConfirmAuthorize (tpwd. current. msg.getAddress ()):
break:
caseOK:
if (tpwd == msg.getNewPassword ())
{

time.set (msg.getTime () - saveMe):
authorized = TRUE;

previous = current;

curren! = tpwd:

if (tenabled)

dv.enable ()
enabled = TRUE:
}
1
J
break:
caseDEVICE:
if (enabled) dv.send (msg.getDeviceMsg ()):
break:
default;

US 6,249,868 Bl
19 20

-continued

130
13
132
133
134
135
136
137
138
139
140
141
142
143

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
162
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
19§
198
200
201
2032
202
204
208
206
207

break:

}
while (dv.receive (dvmsg))

if (enabled) msg.sendDeviceMsg (dvmsg):

catch (Timerlnterrupt)

if (authorized)
{
authorized » FALSE;
msg.sendSaveMe (current, previous. msg.gelAddress ()
time.set (saveMe):
}

else

{
enabled = FALSE;
msg.sendSaveMe(current, previous, msg.getAddress ()
time.set(SaveMe):
dv.disable ();

)
}
}

server()

Messages msg()
PASSWORD current, previous. deut. dprev. newp:

PASSWORD yueuedNew. queuedCurrent, newpuss:
Passwords pwds ()

TIME 3

Datahase db ()

ADDRESS add;

TimeServer ts ()

Bool auth;

while (msg.getNext ()
{
switch (msg.getType ())

caseSAVE_ME:
cumrent = msg.getCurrentPassword ():
previous = msg.getPreviousPassword ():

(p queue(msg.getAddress (). queuedNew, queuedCurrent))

il (queuedCurreal == current)

newp = pswds.generateNewPassword ():
pswds.queue(msg.getAddress (). newp, current):
msg.sendAuthorize(newp. msg.getAddress ()):

}

else throw (Eror (QUEUED_AND_SAVE_ME. msg.getAddress ()):

clsc

if (pswds.initialPassword(current) && pswads. initialPassword
{previous)}
{

db.deletcAgent (msg.getAddress ()):

pewp = pswds.gencrateNewPassword ();

pswds.queue (msg.getAddress(). newp. current);

msg.sendAuthorize(newp. msg.getAddress {)):

else
if (db.retrieveAgent (msg.getAddress (). deur, dprev, auth.m)
if (dcur == cument && tm >= getSystemTime ())

newps=pswds.gencratcNewPassword ();
pswds.queue(msg.getAddress (). newp. current)
msg.sendAuthorize(newp. msg.getAddress ()):

!
clse if (dprev == current && 1m >= getSystemTime ()

msp.sendOK (ts.nextAuthorizationPeriod(msg, getAddress ()

>~

US 6,249,868 B1

21 22
-continued
209 deur. msg.getAddress ()):
210
211 else if (dprev == current && tm < getSystemTime ())
212
213 throw (Error (MULTIPLE__OKS_LOST. msg.getAddress ());
214
215 clsc throw (Error (ALARM. msg.getAddress ()):
216 }
217 else throw (Error (ALARM. msg.getAddress ());
218)
219 }
220 case CONFIRM_AUTHORIZE:
221 newpass = msg.getNewPassword ().
222 current = msg.gelCurrentPassword ():
jade] if(paswds.dequeur (msg.getAddress (). queuedNew, queuedCurrent))
224 {
225 if(newpass == queuedNew && current == queuedCurrent)
226
227 if (db.retrieveAgent(msg.getAddress (). deur.dprevauth.im))
228
229 if (dcur == current)
230
231 m = ts.nextAuthonzalionPeriod{msg.getAddress ()):
232 dh.updatcAgent(msg.gelAddress ().newpass.current,
233 tm + getSystemTime ());
234 msg.SendOK (tm. newpass. msg.getAddress ());
235
236 clse
237
238 throw (Error (CONFIRM_AUTHORIZE_SYNC,
239 msg.getAddress ()):
240 }
241
242 else
243
244 if(pswds.initialPassword (current))
248
246 tm - ts.nextAuthorizationPeriod (msg.getAddress ());
247 db.newAgent(msg.getAddress ().newpass.current.
248 tm + getsystemTime ()
249 msg.sendOK(tm. ncwpass. msg.getAddress ()):
250)
251 else throw(Error(NO__ENTRY. msg.getAddress ())):
252 }
253
254 clse throw (Error (QUEUE _ERROR. msg.getAddress()))
258 }
256 else throw (Error (ALARM. msg.petAddress ()
257 break:
258 default:
259 break:
260 }
261 }
262}

Lines 1-11 of the above program include definitions of
constants and types used in the remaining lines of the
program. Linc 1 defines the enumeration MSG__TYPE that
includes five enumerated constants to describe the five
different 1types of messages used 1o implement the EASS.
These types of messages include the AUTHORIZE, CON-
FIRM AUTHORIZE, OK, and SAVE ME messages
described in FIGS. 6A-B and 7A-F, as well as DEVICE
messages which are exchanged between the CPU (214 in
FIG. 2) and the device controllers (242, 244, 246. 248, and
250 in FIG. 2) via the system controller (218 in FIG. 2) and
via any EASS embedded agents residing in the device
controllers. On lines 3 and 4, an enumeration is declared for
various types of errors and potentially insecure conditions
that may arise during operation of both the EASS server and
EASS embedded agents. These errors and conditions will be
described below in the contexts within which they arisc. On
lines 6-8, three basic types used throughout the implemen-
tation are declared. These types may be implemented either

55

65

using predefined types, such as integers and floating point
numbers, or may be more elaborately defined in terms of
classes. Thesc types include: (1) PASSWORD, a consecu-
tive number of bits large enough 1o express internal pass-
words used within the EASS, commonly 56, 64, or 128 bils;
(2) ADDRESS, a number of consecutive bits large enough to
hold communications addresses for EASS servers and EASS
embedded agents: and (3) TIME, a time value expressed in
hours, minutes and seconds, possibly also including a date
and year. On lines 10 and 11, the constants “interface” and
“saveMe” are defined to be two minutes and 20 seconds,

» respectively. The constant “interface” is the initial grace

period following power up during which an EASS embed-
ded agent passes device messages to and from the device
controller into which it is embedded without authorization.
The constant “saveMe” is the interval at which an EASS
cmbedded agent sends SAVE ME messages to an EASS
server in order to reestablish authorization. In an alterpative
embodiment, both the initial grace period and the SAVE ME

US 6,249,868 B1

23

interval may be configurable by a user, by the EASS server,
by an administrator, or by some combination of users, EASS
servers, and administralors.

On lines 13-88, a number of classes are declared that are
used in the routines “agent” and “server” that follow. Pro-
totypes for these classes are given, but the implementations
of the methods are not shown. These implementations are
quite dependent on the specific computer hardware
platforms, operating systems, and communications proto-
cols employed to implement the EASS. Much of the imple-
mentations of certain of these classes may be directly
provided through operating system calis. The class Error,
declared on lines 13-16, is a simple error reporting class
used in the server routine for exception handling. Only the
constructor for this class is shown on line 15. An instance of
this class is initialized through the arguments passed to the
constructor. These include an integer valuc representing the
particular crror that has been identificd and an address value
that indicates the network or communications address of the
EASS embedded agent that the error relates to.

The class DeviceMessage, declared on lines 18-21,
encapsulates methods and data that implement the various
kinds of device messages exchanged between the CPU and
the device controllcrs of a PC. The methods and data for this

class depend on the types of communications buses »

employed within the PC and are, therefore, not further
specified in this example program. The class Device,
declared on lines 23-30, represents the functionality of the
device controller within which an EASS embedded agent is
embedded. In general, the methods shown for this class
would be implemented as hardware logic circuits. The
methods include optional methods for enabling and dis-
abling the device declared on lines 26 and 27, a method for
sending device messages to the device, declared on line 28,
and a method for receiving device messages from the device,
declared on line 29.

The class Timer, declared on lines 32-36, is an asynchro-
nous timer used in the agent routine. An asynchronous timer
can be initialed for some 1ime period either through the
constructor, declared on line 34, or through the method
“set,” declared on line 35. If the time period is not reini-
tialized before the timer expires, the asynchronous timer
throws an exception or, when implemented in bardware,
raises a signal or causes an interrupt that may then be
handled cither by the agent routine or the logic circuit that
implements the agent routine. The class Timerlnterrupt,
declared on lines 3841, is essentially a place holder class
used in the exception handling mechanism to indicate expi-
ration of a timer. The class TimeServer, declared on lines
43-47, is a class used by the server routine for determining
the next authorization period for 2 particular EASS embed-
ded agent. The method “nextAuthorizationPeriod,” declared
on line 46, takes the network or communications address of
an EASS embedded agent as an argument and returns a time
period for which the EASS embedded agent will be next
authorized. This authorization period may, in some
implementations, be a constant or, in other implementations,
the authorization period may be calculated from various
considerations. including the identity of the particular EASS
embedded agent or the previous authorization history for the
EASS cmbedded agent.

The class Messages, declared on lines 4963, is a gener-
alized communications class that allows an EASS server 10
exchange messages with EASS embedded agents. The
metbod “getNext,” deelared on linc 52, instructs an instance
of the Messages class to return a Boolcan valuc indicating
whether there are more messages queued for reception. If so,

38

45

60

24

getNext makes that next message the current message from
which information can be obtained by calling the methods
declared on lines 53-58. These methods allow for obtaining
the type of the message, the address of the sender of the
message, and the contents of the message, depending on the
type of the message, including new passwords, current
passwords, previous passwords, and authorization times.
The methods “sendauthorize” and “sendOK” declared on
lines 59 and 61 are used in the server routine to send
AUTHORIZE and OK messages to EASS embedded agents,
respectively. The methods “sendConfirmAuthorize” and
“scndSaveMe” declared on lines 60 and 62 arc used in the
agent routine to send CONFIRM AUTHORIZE and SAVE
ME messages to an EASS server, respectively. The class
“AgentMessages,” declared on lines 65—69, derived from
the class “Messages,” allows an EASS embedded agent to
communicate both with an EASS server as well as with the
CPU. In other words, the two methods “getDeviceMsg” and
“sendDeviceMsg,” declared on lines 67-68, allow an EASS
embedded agent 1o intercept device messages senl by the
CPU to the device controller in which the EASS embedded
agent is embedded and to pass device messages from the
device controller back to the CPU.

The class Passwords, declared on lines 71-78, is used
within the server routine for queuing certain password
information as well as for generating passwords and deter-
mining whether a password is an initial password. The
method “initialPassword,” declared on line 74, takes a
password as an argument and returns a Boolean value
indicating whether the password is an initial password or
not. The method “gencraicNewPassword,” declared on lines
75, gencrates a new, non-initial password to pass to an EASS
embedded agent as part of an AUTHORIZE message. A
more sophisticaied implementation of generateNewPass-
word might use an input argument that identifies a particular
EASS embedded agent for generating new passwords spe-
cific to panticular EASS embedded agents. The methods
“queue” and “dequeue,” declared on lines 7677, are used in
the server routine for temporarily storing address/new
password/previous password triples. The class Database,
declared on lines 80-88, represents the database (618 in
FIG. 6A) used by the server 10 track EASS embedded agents
that are authorized by the server. The methods declared on
lines 83-87 allow for adding new agents into the database,
updating a databasc cntry corresponding 1o an agent, retriev-
ing the contents of an entry corresponding to an agent, and
deleting the entry for an agent. The address of an EASS
embedded agent is used as the unique identifier 1o identify
that agent’s entry in a database. In other implementations, a
unique identifier may be gencrated and stored in the data-
base for each EASS embedded agent authorized by the
server routine rather than using the address of the EASS
embedded agent.

The routine “agent,” declared on lines 90-155, is an
example implememation of an EASS embedded agent. The
agent routine takes two passwords, “current” and
“previous,” as arguments. These two input arguments rep-
resent the non-volatile current and previous password reg-
isters 604 and 606 shown in FIG. 6A. Various local variables
are declared on lines 92-98. These include a temporary
password "tpwd,” an asynchronous timer *1ime,” an instance
of the AgentMessages class “msg,” an instance of the device
class "dv” that represents the device conptroller into which
the EASS embedded agent is embedded, a device message

s “dvmsg,” and 1two Boolean variables “authorizc” and

“cnabicd.” The agent routine is implemented within a single
“do” loop starting at line 100 and ending at line 154. Within

US 6,249,868 B1

25
this “do” loop, the agent routine continuously receives and
responds 1o messages from a remote EASS server as well as
passes messages exchanged between the CPU and the device
controller in which the EASS embedded agent is embedded.

A large portion of the message handling logic is enclosed
within a try block that begins on line 102 and ends on line
137. Exceptions generated during execution of the code
within the try block are handled in the catch block beginning
on line 138 and extending 1o line 153. In the case of the
agent routine, exceptions are generated by the asynchronous
timer “time.” Within the “while” loop that begins on lipe 104
and extends through line 132, the agent routine handles any
messages received from a remote EASS server and responds
to those messages as necessary. The “while™ statement on
line 104 iteratively calls the getnext methad of the Agent-
Messages instance “msg” to retrieve each successive mes-
sage that has been reccived and queued internally by msg.
When the member “getNext” returns a TRUE value, msg has
sel an internal pointer 1o make the next queued message the
current message. When the member “getNext” returns a
FALSE value, there are no further messages that have been
received and queued. Thus, any members of msg called
within the “while” loop on lines 106-130 that retrieve values
from messages retrieve those values from the current mes-
sage.

If the current message is an AUTHORIZE message, as
detected on line 108, the agent routine saves the new
password contained in the AUTHORIZE message in the
local password variable “tpwd,” on line 109, and returns a

CONFIRM AUTHORIZE message o the EASS server on ;

line 110. If the message received from the EASS server is an
OK message, as detected on line 112, the routine agent first
checks, on line 113, if the new password conlained within
the OK message is the same as the new password stored in
the local password variable “1pwd.™ If so, the routine agent
reinitializes the asynchronous timer on line 115, sets the
local variable “authorized” 10 the value TRUE on line 116,
transfers the contents of the password variable “current” into
the password variable “previous” on linc 117, wansfers the
new password from the Jocal password variable “1pwd” into
the local password variable “current,” and, il the local
variable “enabled” contains the value FALSE, enables the
device by calling the member “enable” on line 121 and sets
the Jocal variable “enable” to TRUE on line 122. If, on the
other hand, the new password contained in the OK message
is not equal to the new password contained in the local
password variable “ipwd,” then the agent routine simply
ignores the received OK message. If the message received is
a device message, as detecled on line 126, and if the local
variable “enabled” has the value TRUE, then the agent
routine passes that received device message on o the device
by calling the device member “send” on line 127. If the
reccived message is not of the type AUTHORIZE, OK, or
DEVICE, the agent routine simply ignores the message.

Once all the received and queued messages have been
handled in the “while” block starting on line 104 and
continuing to line 132, the agent routine passes any mes-
sages sent by the device to the CPU if the local variable
“enable” has the value TRUE. Messages arc reccived from
the device by calling the receive member of the Device
instance “dv” and are transmitted by the agent routine 1o the
CPU by calling the member “sendDeviceMsg” of the Ageni-
Messages instance “msg.”

If the asynchronous timer “time” expires and generates an
interrupt, that interrupt is handled on lincs 140-152. If the
local variable “authorized™ has the valuc TRUE, then autho-
rized is set 1o the value FALSE on line 142, a SAVE ME

15

40

60

26

message is sent by the agent routine to the EASS server on
linc 143, and the asynchronous timer “time” is reinitialized
on line 144. However, if the local variable “authorized” has
the value FALSE, then the asynchronous timer has already
once expired after the agent routine failed to acquire autho-
rization from the remote EASS server. In that case, the agent
routine sets the local variable “enable” to FALSE on line
148, sends another SAVE ME message 1o the EASS remote
server on line 149, reinitializes the asynchronous timer on
line 150, and finally disables the device on line 151 by
calling thc member “disable” of the Device instance “dv.”

The routine “server” on lines 157-264 implements the
EASS server. Local variables are declared on lines 159-167,
including an instance of the Messages class “msg,” an
instance of the Passwords class “pwds,” an instance of the
Database class “db,” and an instance of the TimeServer class
“18.” A number of local PASSWORD variables arc declared,
including the Jocal variables “current,” “previous,” “deur,”
“dprev,” “newp,” “quenedNew,” “queuedCurrent,” and
“newpass.” In addition, a local TIME variable “tm,” a local
ADDRESS variable “add,” and a local Boolean variable
“auth” are declared.

The server routine continuously receives messages from
EASS cmbedded agenis and, as nccessary, responds to those
messages in the “while” loop beginning on linc 169 and
ending on line 262. The server routine receives only two
types of messages: SAVE ME messages as detecied on line
173, and CONFIRM AUTHORIZE messages, as detected on
line 220.

If the next received message is a SAVE ME message, the
server routine first extracts the current and previous pass-
words from thc SAVE ME message and places them into the
local PASSWORD variables “current” and “previous,”
respectively. The server routine then attempts to dequeue an
address/new password/current password triple from the
“pswds” instance of the Passwords class. The address of the
EASS embedded agent that sent the SAVE ME message is
used as a unique identifier to locate the queued triple. If a
triple is found, as detected on line 176, and if the current
password extracled from the SAVE ME message is equal 10
the current password saved within the triple, as detected on
line 178, then the server routine must have previously sent
an AUTHORIZE message to the EASS embedded agent, but
the handshake mechanism must have failed afier the
AUTHORIZE message was scnt. In this casc, the server
routine simply generates 2 new password on line 180,
queues the address/new password/current password triple on
line 181, and sends a new AUTHORIZE message to the
EASS embedded agent on line 182. If, on the other hand, the
current password extracted from the SAVE ME message is
not equal to the current password dequeued from pswds, a
more serious error has occurred and the routine server
throws a QUEUED_AND_SAVE_ME exception on line
184. The exception handlers are not shown in this example
program because they are quite dependent on implementa-
tion details and detailed error handling strategies that may
vary depending on the use to which the EASS has been
applied.

If there is no queued entry for the EASS embedded agent,
then, on line 188, the server routine calls the initialPassword
member of pswds in order to determine whether both the
current and previous passwords that were included in the
SAVE ME message are special initial passwords. If these
passwords are initial passwords, then, beginning on line 191,
the server routine deletes any databasc entrics for the EASS
embcedded agent, generates a new password, queucs a new
address-new password-current password triplet, and sends

US 6,249,868 Bl

27

an AUTHORIZE message to the EASS embedded agent on
line 194. This is donc because the SAVE ME message was
sent from an EASS embedded agent in the Initial Power-On
Grace Period state (410 in FIG. 4), or, in other words, from
an EASS embedded agent that is attempting 10 connect to the
server either for the first time or for the first time following
a reinitialization. If, on the other hand, the current and
previous passwords in the SAVE ME message are not initial
passwords, then the server routine attempls, on line 198, 1o
retrieve from the database an entry corresponding to the
EASS embedded agent identified by the address of the agent.
If an cntry exists in the database, then the server routine
attemplts to identify, on lines 200-217, a scenario by which
the SAVE ME message was sent by the EASS embedded
agent. If no entry is present in the database for the EASS
embedded agent, then the server routine throws an alarm
exception on line 217. This alarm exception indicates a
potential attempt by a stolen or otherwise misused PC to
establish a connection and authorization with the EASS
server represented by the server routine.

On line 200, the server routine compares the current
password stored within the retrieved database entry to the
current password retrieved from the SAVE ME message and
compares the expiration time stored in the database 1o the

current lime as retrieved by the operaling system routine 2

“getSystemTime.” If the current password in the database
entry is the same as the current password in the SAVE ME
message and authorization has not yet expired for the EASS
embedded agent, then a likely explanation for the SAVE ME
message is that a previous CONFIRM AUTHORIZE mes-
sage scnt from the EASS embedded agent 1o the server
routinc was lost. Therefore, the server routine, on lines
202-204, generates a new, non-initial password, queues a
new address-new password-current password triple, and
sends a new AUTHORIZE message to the EASS embedded
agent. If, on the other hand, the previous password from the
database entry equals the current password in the SAVE ME
message and authorization has not expired, then an OK
message from the server routine to the EASS embedded
agenl was probably losl, and the server routine resends the
OK message on lines 208-209. If the previous password
from the database entry equals the current password in the
SAVE ME message and authorization bas expired, probably
multiple OK messages have been lost indicating some error
in communications, and the scrver routine throws a
MULTIPLE__OKS_ LOST exception on line 213, Finally, if
the contents of the database entry do not refiect onc of the
above three sceparios handled on lines 200-214, the
received SAVE ME message most likely indicates an

attempt 10 establish a connection and acquire authorization s

by a stolen or misused EASS embedded agent and the server

routine therefore throws ap alarm exception on line 215.
When the server routine receives a CONFIRM AUTHO-

RIZE message, it first extracts the new password and current

password from the CONFIRM AUTHORIZE message on s

lines 221 and 222. The server routine then attempts 1o
dequeuc an address-new password-current password triple
on line 223 corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message. If a queued
triple is found, then the code contained in lines 225-255 may
be executed in order 10 properly respond to the CONFIRM
AUTHORIZE message. If there is no queued triple, then, on
line 256, the server routine throws an alarm exception to
indicale a potential attempt 1o connect to the server and to
acquirc authorization from the server by a stolen or misusced
EASS cmbedded agent. Afier dequeuing a tripie. the server
routine checks, on line 227, whether the new password and

15

30

35

40

o
2

28

current password retrieved from the CONFIRM AUTHO-
RIZE message correspond to the new password and current
password that were queued in the dequeued triple. If so, then
the server routine atiempts, on line 227, 10 retrieve a
database entry for the EASS embedded agent. If a database
entry is retrieved, then the server routine tests, on line 229,
whether the current password in (he database entry is equal
1o the current password in the CONFIRM AUTHORIZE
message. If so, the CONFIRM AUTHORIZE message is a
valid response to a previous AUTHORIZE message sent by
the server routine to the EASS embedded agent, and, on
lines 231-234, the scrver routine updates the databasc cntry
for the EASS embedded agent and sends an OK message to
the agent. If, on the other hand, the current password
retrieved from the database entry is not equal to the current
password that was retricved from the queue, the server
routine throws a CONFIRM_AUTHORIZE_SYNC excep-
tion on line 238. If there was no database entry correspond-
ing to the EASS embedded agent, but if the current password
included in the CONFIRM AUTHORIZE message was an
initial password, then this CONFIRM AUTHORIZE mes-
sage came from a EASS embedded agent in the Initial
Power-On Grace Period (410 in FIG. 4) and the server
routinc creates a new databasc cntry for the EASS embedded
agent and sends an OK message o the EASS cmbedded
agent. However, if the password included in the CONFIRM
AUTHORIZE message is not an initial password, then the
server routine throws a NO_ENTRY exception indicating a
serious problem in the bandshake. If no triple was found in
the queue corresponding to the EASS embedded agent that
sent the CONFIRM AUTHORIZE message, the server
routine, on line 256, throws a QUEUE_ERROR exception
indicating a potential problem with the queuing mechanism.

One skilled in the ant will recognize that the above-
described implementation of an example EASS server and
EASS embedded agent describes one potential embodiment
of the present invention and that other implementations may
be realized. For example, the EASS server can be imple-
mented in any number of programming languages for any
number of different operating systems and hardware piat-
forms. The EASS embedded agent is preferably imple-
mented as a hardware logic circuit within the device con-
troller for the device into which the EASS embedded agent
is embedded. A hardware logic circuit cannot be removed

s without destroying the device controller. A firmware or

software routine can, by contrast, be removed or re-instalied.
The handshake mechanism can be implemented with any
number of different communication message protocols, with
any number of different types of databases, and with any
number of different strategies for handling potential error
and alarm exception. Furthermore, additional error and
alarm conditions might be detected by a more elaborate
implementation. The database may itself be encrypled or
protecied by additional security mechanisms.

In the above-described embodiment, an EASS embedded
agent can only receive authorization by first sending a SAVE
ME message 10 an EASS server. In aliemnative embodiments,
the EASS server or a user of the sysiem hosting the EASS
embedded agents may be provided with the capability to
initiate authorization of an EASS embedded agent.
Moreover, the EASS embedded agents may be manufac-
tured 1o contain an initial unlock password and to initially
have an unlimited period of authorization. Once the sysiem
hosting the EASS embedded agent is powered up and

5 running, the EASS embeddcd agent can then be identified by

an EASS scrver and controlied by the EASS server by
sending the EASS cmbedded agent an authorization for a

