
(12) United States Patent
Franco et al.

US007792964B2

US 7,792,964 B2
Sep. 7, 2010

(10) Patent N0.:
(45) Date of Patent:

(54)

(75)

(73)

(*)

(21)
(22)
(65)

(63)

(51)

(52)
(58)

RUNNING INTERNET APPLICATIONS WITH
LOW RIGHTS

Inventors: Roberto A. Franco, Seattle, WA (US);
Anantha P Ganjam, Sammamish, WA
(US); John G. BedWorth, Redmond,
WA (US); Peter T. Brundrett, Seattle,
WA (US); Roland K Tokumi, Issaquah,
WA (US); Jeremiah S. Epling,
Kirkland, WA (US); Daniel Sie,
Bellevue, WA (US); Jianrong Gu,
Bellevue, WA (US); Marc Silbey,
Seattle, WA (US); Vidya
Nallathimmayyagari, Redmond, WA
(US); Bogdan Tepordei, Sammamish,
WA (US)

Assignee: Microsoft Corporation, Redmond, WA
(Us)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 771 days.

Appl. No.: 11/262,316

Filed: Oct. 28, 2005

Prior Publication Data

US 2006/0277311 A1 Dec. 7, 2006

Related US. Application Data

Continuation-in-part of application No. 11/ 145,530,
?led on Jun. 3, 2005.

Int. Cl.
G06F 15/173 (2006.01)
G06F 15/16 (2006.01)
US. Cl. 709/225; 709/229

Field of Classi?cation Search 709/225,

709/229
See application ?le for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,892,904 A
5,949,882 A
5,974,549 A 10/1999
6,279,111 B1 8/2001
6,321,334 B1* 11/2001
6,430,561 B1* 8/2002
6,609,198 B1* 8/2003
6,789,170 B1* 9/2004

2002/0019941 A1* 2/2002

4/1999
9/1999

Atkinson et a1.
Angelo
Golan
Jensenworth et a1.
Jerger et a1. 726/1

Austel et a1. Wood et a1. 713/155

Jacobs et a1. 711/133

Chan et a1. 713/185

(Continued)
FOREIGN PATENT DOCUMENTS

1 1 19321

OTHER PUBLICATIONS

HK 2/2009

Moshe Zviran and Chanan GleZer, Toward Generating a Data Integrit
Standard, 2000, Data & Knowledge Engineering 32, pp. 291-313.*

(Continued)
Primary Examineriloon H HWang
Assistant Examiner4Chau D Le

(57) ABSTRACT

In various embodiments, applications that are con?gured to
interact With the Internet in some Way are executed in a
restricted process With a reduced privilege level that can
prohibit the application from accessing portions of an asso
ciated computing device. For example, in some embodi
ments, the restricted process can prohibit applications from
read and Write access to portions of a system’s computer
readable media, such as the hard disk, that contains adminis
trative data and settings information and user data and set
tings. In these embodiments, a special portion of the disk,
termed a “containment Zone”, is designated and used by
applications in this restricted process.

10 Claims, 6 Drawing Sheets

Client Computing Device

102

Browser

1on1
200 104

Admin Administrative K-105
Broker Specs

User User 0-1”
Broker Space

Containment r110
Zone

US 7,792,964 B2
Page 2

US. PATENT DOCUMENTS

2002/0184520 A1 12/2002 Bush et al.
2004/0006706 A1 1/2004 Erlingsson
2004/0103203 A1* 5/2004 Nichols et al. 709/229

2004/0199763 A1* 10/2004 Freund 713/154

2005/0149726 A1* 7/2005 Joshiet al. .. 713/164

OTHER PUBLICATIONS

Jesper Johansson and Eugene Schultz, Dealing With Contextual Vul
nerabilities in Code: Distinguishing between Solutions and

Pseudosolutions, 2003, Computers & Security, vol. 22, No. 2, pp.
152-159.*
“Non-Final Of?ce Action”, U.S. Appl. No. 11/145,530, (May 26,
2010),37 pages.
“Final OF?ce Action”, U.S. Appl. No. 11/145,530, (Jan. 6, 2010),28
pages.
“Non Final Of?ce Action”, U.S. Appl. No. 11/145,530, (Jul. 17,
2009),24 pages.
“PCT Search Report and Written Opinion”, Application No. PCT/
US06/18752, (Aug. 31, 2007),7 pages.

* cited by examiner

US. Patent Sep. 7, 2010 Sheet 1 of6 US 7,792,964 B2

/—106 /—108

104 \\
Admini tr tlve

5P User Space
<::J> Containment F110

Zone

112\

Bro
Cllent Computing Device 102 j wser

100w '

US. Patent Sep. 7, 2010 Sheet 2 of6 US 7,792,964 B2

639m /(N8 0 9:59:00 E26

(02

US. Patent Sep. 7, 2010 Sheet 4 of6 US 7,792,964 B2

mcoN

323m

EoEEmEoQ
Q: K

vow

\\\
023w 6x05 hum

2: L 55 mm: m.

I f 8v

@225 6x05
@2 K 9:25.552 5E2

\\ 69505

(vow (CON (NF? (Now

0250 QESQEQO E25

(02

US. Patent Sep. 7, 2010 Sheet 5 of6 US 7,792,964 B2

104 \ Admlnlstrat Space E User Space M

204 _/ Containment
// 11% W Zone 2

Containment /— 110a
Zone 1

Client Computing Device
T estrioted rowser

100w

US. Patent Sep. 7, 2010 Sheet 6 of6 US 7,792,964 B2

wEEmoE C2323“;
com

Emogox {£58

£9302 m9< 02S EQUOE wwo J mmo

oomtEE vtezwz

QumtEE 3:05: Emogwx

g 3532
EEmoE $50 a

[I who

Nmo

E5 053085

F. ooo

wEEmEm

US 7,792,964 B2
1

RUNNING INTERNET APPLICATIONS WITH
LOW RIGHTS

RELATED APPLICATION

This application is a continuation-in-part of and claims
priority to US. patent application Ser. No. 11/ 145,530, ?led
on Jun. 3, 2005, the disclosure of Which is incorporated by
reference herein.

BACKGROUND

Many different types of applications are able to interact
With the Internet and acquire data or other information from
the Internet. For example, some applications can alloW a user
to doWnload certain content, such as Web pages, ?les and the
like. With the ability to interact With the Internet come various
risks that are associated With such interaction.

For example, through various interactions that can take
place betWeen an application and the Internet, so called mal
Ware or spyWare can get doWnloaded on the user’ s system and
can adversely impact the system’s performance and, perhaps
more importantly, can impermissibly install malicious soft
Ware. For example, buffer overruns and other security holes
can alloW malWare to maliciously make its Way onto a user’s
system.

With regard to impacting the system’s performance, con
sider the folloWing. In some instances, malWare may attempt
to, or may actually change security settings associated With a
particular application or the user’s system in general, thus
rendering it more likely for malicious tampering to take place.

Against the backdrop of these and other security concerns
remains the ever-present desire, on the part of those Who
develop softWare, to provide the user With a safe and rich
experience.

SUMMARY

In various embodiments, applications that are con?gured
to interact With the Internet, in some Way, are executed in a
restricted process With a reduced privilege level that can
prohibit the application from accessing portions of an asso
ciated computing device. For example, in some embodi
ments, the restricted process can prohibit applications from
read and Write access to portions of a system’s computer
readable media, such as the hard disk, that contains adminis
trative data and settings information and user data and set
tings. In these embodiments, a special portion of the disk,
termed a “containment Zone”, is designated and used by
applications in this restricted process. The application has full
access to the “containment Zone” and the “containment Zone”
is treated as untrusted data by the rest of the system and
applications on the system.

In other embodiments, the application Will need access to
areas outside of the “containment Zone”, and a broker mecha
nism is utiliZed and is logically is interposed betWeen the
application and areas outside of the containment Zone (i.e. the
restricted area) of the computing system. The broker mecha
nism acts to broker access to the restricted area and to ensure

that the user is aWare of and can approve the application’s
access to the restricted areas of the computing system.
Explicit user interaction is needed in order to gain access to
the restricted area. Such access cannot be automated to cir
cumvent the restrictions placed on the application.

In other embodiments, a shim mechanism is employed to
redirect access, typically for third party extensions, to the

20

25

30

35

40

45

50

55

60

65

2
containment Zones. This is useful for keeping compatibility
With third party extensions if the application is a host appli
cation.

In yet other embodiments, an application’ s execution in the
restricted process can result in another application being
launched Which is functionally similar to the restricted appli
cation, yet is less restricted in order to facilitate the user
experience in particular contexts Which have been deemed as
trusted or at least desirably secure.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a system in accordance With
one embodiment.

FIG. 2 is a block diagram of a system in accordance With
one embodiment.

FIG. 3 is a How diagram that describes steps in a method in
accordance With one embodiment.

FIG. 4 is a block diagram of a system in accordance With
one embodiment.

FIG. 5 is a block diagram of a system in accordance With
one embodiment.

FIG. 6 is a block diagram of a client computing device in
accordance With one embodiment.

DETAILED DESCRIPTION

OvervieW
In various embodiments, applications that are con?gured

to interact With the Internet, in some Way, are executed in a
restricted process With a reduced privilege level that can
prohibit the application from accessing portions of an asso
ciated computing device. For example, in some embodi
ments, the restricted process can prohibit applications from
read and Write access (or at least Write access) to portions of
a system’s computer-readable media, such as the hard disk,
that contains administrative data and settings information and
user data and settings. In these embodiments, a special por
tion of the disk, termed a “containment Zone”, is designated
and used by applications in this restricted process. The appli
cation has full access to the “containment Zone” and the
“containment Zone” is treated as untrusted data by the rest of
the system and applications on the system.

In other embodiments, the application Will need access to
areas outside of the “containment Zone”, and a broker mecha
nism is utiliZed and is logically interposed betWeen the appli
cation and areas outside of the containment Zone (i.e. the
restricted area) of the computing system. The broker mecha
nism acts to broker access to the restricted area and to ensure
that the user is aWare of and can approve the application’s
access to the restricted areas of the computing system. In at
least some embodiments, explicit user interaction is needed in
order to gain access to the restricted area. In these embodi
ments, such access cannot be automated to circumvent the
restrictions placed on the application. In yet other embodi
ments, silent process elevation can be alloWed can controlled
by policy, or silent Write access can be hardcoded.

In other embodiments, a shim mechanism is employed to
redirect access, typically for third party extensions, to the
containment Zones. This is useful for keeping compatibility
With third party extensions if the application is a host appli
cation.

In yet other embodiments, an application’ s execution in the
restricted process can result in another application being
launched Which is functionally similar to the restricted appli
cation, yet is less restricted in order to facilitate the user

US 7,792,964 B2
3

experience in particular contexts Which have been deemed as
trusted or at least desirably secure.

The techniques described in this document can be
employed in connection With any type of application that
interacts With the Internet. These types of applications, as Will
be appreciated by the skilled artisan, are many and varied.
However, to provide a tangible context to appreciate the
inventive embodiments, an application in the form of a Web
broWser application is utiliZed. It is to be appreciated and
understood, hoWever, that the techniques can be employed
With other types of applications Without departing from the
spirit and scope of the claimed subject matter. By Way of
example and not limitation, these other types of applications
include instant messaging clients, peer-to-peer clients, RSS
readers, email clients, Word processing clients and the like.

Restricting Internet Applications and Using a Broker
FIG. 1 illustrates a high level vieW of a system 100 in

accordance With one embodiment. In this example, system
100 includes an Internet application in the form of a Web
broWser 102 that can interact With the Internet as shoWn.
System 100 also includes computer-readable media 104, such
as a hard disk, that contains different portions or “space” that
contain different types of information, settings data and the
like.

In this example, one portion or space is the administrative
space 106 that includes information and data that is usually
accessible to and manipulable by a system administrator. This
type of information and data can include information and data
that is typically contained in operating system folders, com
puter system folders, permanent ?le folders and the like. This
space usually requires an administrator With the appropriate
credentials and privileges in order for its content to be
accessed and manipulated.

Anotherportion or space is the user space 108 that includes
user information and data. This type of information and data
can include information and data that is typically contained in
user-accessible folders such as My Documents, My Music,
Desktop and the like. This space can typically be associated
With lesser privileges in order for access to be granted.

In accordance With one embodiment, computer-readable
media 104 includes one or more containment Zones 110. A
containment Zone is the only Zone Which can, in at least some
embodiments, be directly Written to by broWser 1 02. To facili
tate this functionality, a Wall or blocking mechanism 112 is
provided and prevents broWser 102 from directly Writing to
the administrative space 106 or the user space 108. In at least
some embodiments, a containment Zone can alloW for the
settings of the restricted application to be saved betWeen
sessions in a place Where they could not pollute any other
application on the machine. The containment Zone might
include a feW registry locations and ?les folders. In the con
text of a Web broWser application, containment Zone 110 can
include a Temporary Internet Files folder Which is used to
improve Web page loading time and for caching other types of
data.

Thus, in this embodiment, one or more containment Zones
are speci?cally de?ned and designated as those portions of
the computing device to Which an Internet application, such
as a Web broWser application, can have access. This is differ
ent from an approach Which simply denies access to portions
of a disk and permits access to other portions based on the
particular user Who might be attempting such access. Rather,
in the inventive type of approach, the restriction is applica
tion-centric and not necessarily user-centric. That is, the
inventive approach can be considered as user-independent.
This approach helps to ensure that only a small number, eg
a minimum number of required locations, are exposed in the

20

25

30

35

40

45

50

55

60

65

4
containment Zone and helps to ensure that other applications
do not store settings in the containment Zone. In addition, this
application-centric approach can make both the administra
tive and the user space inaccessible to the application.

Hence, at this point, Wall or blocking mechanism 112 is
logically interposed betWeen broWser 102 and certain pre
de?ned spaces, such as the administrative 106 anduser spaces
108, to prevent the broWser from directly accessing such
spaces. Yet, in some instances, it can be desirable to alloW an
application to access the administrative or user space. For
example, the user Who is a system administrator may Wish to
legitimately manipulate some system settings. Alternately, a
regular user may Wish to save a picture to the My Document
folder.

In this embodiment, a broker mechanism is utiliZed and is
logically interposed betWeen the application, in this case
broWser 102, and the restricted area of the computing system.
The broker mechanism acts to broker access to these
restricted areas and to ensure that the user is aWare of and can

approve the application’s access to these restricted areas of
the computing system.
As an example, consider FIG. 2, Wherein like numerals

from the FIG. 1 embodiment have been utiliZed. There, a
broker mechanism is provided in the form of broker objects
200, 202. In this example, broker object 200 is an adminis
trative space broker object and brokers access to the admin
istrative space 106. Broker object 202, on the other hand, is a
user space broker object and brokers access to the user space.
The broker mechanism can be implemented in any suitable
Way using any suitable type of object. In one implementation,
each broker object is implemented as a DCOM local server
object. In addition, broker objects run in a separate process
from broWser 102, Which provides a degree of protection
from attacks by malicious code that target broWser 102. In
addition, in at least one implementation, the broker objects
are task based and have their lifetimes de?ned by the tasks
that they are to accomplish.

In this example, When an application such as broWser 102
Wishes to access a particular restricted space, such as the
administrative or user space, the application calls the associ
ated broker object Which then inspects the application’s
request. The broker object can inspect the request for a num
ber of reasons among Which include ensuring that it is a
Well-formed request or checking for an electronic signature
on the ?les being doWnloaded by the application. Once the
request is inspected, the broker object can take steps to broker
access to the restricted space. This is not only useful for the
application itself, but for third party extensions that run inside
the application’s process. For example, in the context of
broWser 102, a typical third party extension that might run
inside the broWser process is a tool bar, such as the Google
tool bar. Sometimes, these third party extensions may Wish to
access the restricted space of the computing device. In these
situations, the broker object can broker access for these third
party extensions to the restricted space of interest.

In addition, there may be third party extensions that do not
necessarily run inside the broWser process. For these exten
sions, the broker objects can be used as Well. For example, if
the user is on a Sharepoint site, they might navigate to a Word
or PDF document that actually gets displayed inside the
broWser. Yet, the associated extension that is responsible for
getting this document for the user does not run inside the
broWser’s process. In this situation, the broker objects can be
used to broker access to the restricted space of interest.

In some embodiments, brokering access to restricted space
can include prompting the user to ascertain Whether the user
Wishes to access the space in the manner represented in the

US 7,792,964 B2
5

request. For example, if the user is attempting to save a picture
to their My Documents folder, the broker object may simply
ask the user, through an appropriate dialog box, if this is the
user’s intent. If con?rmed, then the broker object can permit
and facilitate the access. Alternately or additionally, if the
user is the administrator and is attempting to Write to the
administrative space, then the broker object may request the
administrator to enter their credentials. In this manner, access
to the restricted space is maintained. In these examples, the
broker objects perform the Writing or modify the restricted
space so as to abstract that process aWay from the application
that is calling.

In addition, the broker objects can further increase security
by forcing certain tasks to be called in sequence and by
caching various parameters associated With the sequenced
calls. As an example, consider the folloWing. In some
instances, malicious code may attempt to automatically save
a ?le to a location in the restricted space of the computing
device. More speci?cally, this malicious code may simply
call a “Save”API and attempt to save the ?le. In this embodi
ment, hoWever, a sequence of calls at least some of Which
require the user’s intervention can be utiliZed to protect
against this scenario. More speci?cally, in accordance With
one embodiment, a ?rst call can be made to the broker object
in Which the user provides the name of the ?le and the location
to Which the ?le is to be saved. This information is then
cached in the broker object in a manner in Which it cannot be
tampered With. Subsequently, a second call by the application
can be made to save the ?le. In this second call, parameters are
provided Which can include the name of the ?le and the
location to Which the ?le is to be saved. The broker object can
then check the cached parameters against the parameters
received in the second call and if they match, permit the ?le to
be saved in the appropriate location. If, on the other hand, the
parameters do not match, the ?le Will not be saved in the
speci?ed location. In this embodiment, the dialog that takes
place With the user can be hosted in the broker to ensure even
more security.

Thus, Wall or blocking mechanism 112 and the broker
mechanism 200, 202 collectively Work to block access to
restricted areas of the disk, yet not inhibit access to those
portions in appropriate circumstances.

Having explored the notion of the Wall or blocking mecha
nism, as Well as the broker mechanism, the discussion that
folloWs just beloW provides but one example (along With an
alternative example) of hoW the blocking mechanism can be
implemented. It is to be appreciated and understood that the
blocking mechanism and broker mechanism can be imple
mented in other Ways Without departing from the spirit and
scope of the claimed subject matter.

Blocking MechanismiImplementation Example
In the discussion that folloWs, a blocking mechanism is

described in the context of a tokeniZed system that imposes
loW rights on an Internet application. The imposition of loW
rights, in turn, causes certain portions of the client system,
such as the administrative and user spaces, to be restricted
from the application. In a ?rst embodiment, a token Which is
not necessarily structured to inherently permit this type of
applicant-centric functionality is processed and recon?gured
to implement this functionality. In a second embodiment, a
token is structured, through What are referred to as “integrity
levels”, to permit the application-centric functionality
described above.

First EmbodimentiRecon?guring a Token
In many systems, When a user runs or executes an applica

tion, the application executes in the user’s context. What this
means is that the user typically has user data, such as a user

20

25

30

35

40

45

50

55

60

65

6
name and user privileges, that circumscribe the execution of
the application. More speci?cally, the user name and privi
leges can be represented by and in the context of a token.
Thus, When a user executes an application, the application
becomes aWare of and inherits aspects of the user’s context,
such as the user’s privileges, via the token. Accordingly, if the
user is the system administrator, then an associated token
Would identify the user as such, and the application Would
inherit the system administrator’s privileges Which, in turn,
Would alloW the application to Write to the administrative
space mentioned above.

FIG. 3 is a How diagram that describes steps in a token
processing method in accordance With one embodiment. The
method can be implemented in connection With any suitable
hardWare, softWare, ?rmWare or combination thereof. In one
embodiment, aspects of the method are implemented by a
suitably con?gured application, such as broWser application
102 in FIGS. 1 and 2.

Step 300 launches an application Which, in the present
example, is a Web broWser such as the broWser illustrated and
described above. When the user launches the application, a
token associated With the user becomes available to the appli
cation from Which, as noted above, the application can inherit
the user’s privileges.

Step 302 ascertains the type of user. There can be different
types of users such as an administrative user, a poWer user, a
backup operator and the like. Step 304 removes privileges
associated With the type of user. In the illustrated embodi
ment, this step is implemented by effectively manipulating
the token’s data to remove designations that indicate any
privileges associated With the token and hence, the user type.
This step essentially creates a block to the administrative
space of the computing device, such as administrative space
106 in FIGS. 1 and 2.

Step 306 adds restrictions on the user space. In the illus
trated and described embodiment, this is done by effectively
manipulating the token’ s data to remove the user’ s name from
the token. By removing the user’s name from the token, the
privileges that are associated With that particular user are
removed as Well.

Step 308 then de?nes one or more containment Zones for
read/Write access. In this particular example, this step is
implemented by replacing the removed user name With a
particular de?ned user group name, for example, “IEUsers
Group”. NoW, for the one or more containment Zones, these
Zones are the only Zones designated for read/Write access for
members of the particular de?ned group name.

Thus, at this point, any administrative privileges have been
removed thus effectively blocking the administrative space.
LikeWise, the user’s privileges have been removed, thus
blocking access to the user space. HoWever, by changing the
user’s name to a particular group name and associating that
group name With the containment Zone(s), read/Write access
for the application can noW be limited only to the containment

Zone(s).
More speci?cally, having proceeded as described above,

step 310 terminates the old process associated With the appli
cation that Was launched, and step 312 creates a neW process
for the application With the recon?gured token.

Using this recon?gured token, the application Will not be
able to directly access either the administrative space or the
user space. Rather, the application Will only be able to directly
Write to the containment Zone and, Without further interven
tion by, for example, a broker mechanism, the application Will
be unable to cause data to be Written to the user or adminis

trative space.

US 7,792,964 B2
7

Second EmbodimentiUsing Integrity Levels
In another embodiment, a token is utilized and is struc

tured, through What are referred to as “integrity levels”, to
permit the application-centric functionality described above.
That is, through a process referred to as Mandatory Integrity
Control, the token that is associated With a user has different
integrity levels such as “high”, “medium” and “loW” that can
be set. Likewise, computing resources on the client device
have associated integrity levels and in order to access
resources, the resource must have the same integrity level or
one that is loWer than the user’ s integrity level.

So, for example, by establishing the integrity levels of the
administrative and user spaces as “high” and “medium”
respectively, and that of the user as “loW”, access to the
administrative and user spaces is effectively blocked. HoW
ever, designating a containment Zone as having a “loW” level
of integrity alloWs a user to access that containment Zone
through Whatever application the user happens to be using.

The notion of integrity levels can also be applied to mes
sage sending processes that occur betWeen and amongst
applications to further enhance the security of the overall
system. As an example, consider the folloWing. Applications
can communicate With one another using messages. One type
of messaging system is the WindoW Messaging System,
Which Will be understood and appreciated by those of skill in
the art. The messaging that takes place betWeen applications
typically takes place using a set of APIs through Which the
applications can call and send messages to one another.

Messaging can alloW for a couple of different conditions
that can potentially present security risks. First, through mes
saging an application may attempt to automate another appli
cation’s or code’s behavior. For example, one application
might be a credential user interface in Which a user is to
provide their name and passWord for authentication. Yet,
through the messaging dynamic, another application might
be able to automate this behavior such that the user need not
physically enter their credentials. If this occurs, then it may be
possible for an application that has a loWer integrity level to
manipulate an application that has a higher integrity level
Which, in turn, presents a security risk. Second, often times an
application Will have cause to start another application or
cause objects to be instantiated for any number of reasons. If,
in this scenario, a loWer integrity application is alloWed to
start a higher integrity application, it may be possible for the
loWer integrity application to perform tasks that it should be
restricted from performing.

In accordance With one embodiment, Whenever an appli
cation attempts to use a messaging system to communicate
With another application, a component in the messaging sys
tem checks the source’s integrity level (i.e. the originator of
the message) and the target’ s integrity level (i.e. the intended
recipient of the message). If the integrity levels are equal or
the integrity level of the target is loWer than that of the source,
then the message is alloWed. If the integrity level of the target
is higher than the integrity level of the source, then the mes
sage is blocked.
More generally hoWever, Whenever an application attempts

to perform an action that is associated With an integrity level,
if the attempted action pertains to an integrity level that is the
same as or loWer than the application attempting the action,
then the action is alloWed. Otherwise, the action is blocked.

Using a Shim
In at least some embodiments, a shim mechanism, such as

shim 400 in FIG. 4, is utiliZed to redirect access, typically for
third party extensions, to the containment Zones or so-called
virtualiZed locations. More speci?cally, in the context of the
broWser application, many different third party extensions

20

25

30

35

40

45

50

55

60

65

8
can be provided and run in conjunction With or inside of the
broWser. For example, the Google toolbar is one example of
an extension that is designed to run inside of a broWser.

Certain extensions typically require Write access to sec
tions of a ?le system and/or registry in order to operate cor
rectly. For example, the Google tool bar may Wish to save a
list of favorite searches for a particular user. Yet, Without
access to the user space, this type of Write Would be blocked
by the Wall or blocking mechanism 112.

In accordance With one embodiment, When application 1 02
or an associated third party component attempts to Write to a
restricted space, shim 400 is con?gured to trap and redirect
the call and Write the data into a containment Zone or virtu
aliZed location. Subsequent calls by the application for the
data that Was redirected to the containment Zone are handled
by the shim and the appropriate data is retrieved from the
containment Zone. Hence, data that Was intended to be Written
to the administrative or user space by a particular extension or
application is redirected into an appropriate containment
Zone. In some embodiments, there can be no redirection for
Write access When it pertains to an administrative space.

In at least some embodiments, data that is attempted to be
Written such as settings and con?guration data by the appli
cation is not shimmed. Rather, in these embodiments, only
components or code that are not a recognized part of the basic
application are shimmed. For example, a broWser typically
ships With a collection of DLLs and other code that imple
ments the basic broWser. These DLLs and other code Would
be considered as a part of the basic application for purposes of
determining Whether shimming should take place. Any third
party extensions that are added to the broWser Would be
shimmed. By doing this, these embodiments avoid a situation
in Which an exploited vulnerability can change the virtualiZed
settings and trick the host application into reading those neW
settings. If these Were security settings, this could be used to
perform an elevation of privilege attack on the application.
Accordingly, by shimming third party extensions, the
chances of an elevation of privilege attack are greatly
reduced.

This alloWs third party extensions to continue to operate
Without requiring any third party code to be reWritten. In
operation, the third party extension believes it is Writing data
to the user or administrative space. Yet, through the mecha
nism of the shim, such data is getting Written to and read from
the containment Zone.

Launching an Application that is Not Restricted
As noted above, in some embodiments, an application’s

execution in the restricted process can result in another appli
cation being launched Which is functionally similar to the
restricted application, yet is less restricted in order to facili
tate the user experience in particular contexts Which have
been deemed as trusted or at least desirably secure.
As a more tangible example, consider the folloWing in the

broWser context. Assume that a corporate user has access
through their client computing device to both the Internet and
a company intranet. Assume also that the company intranet is
a secure and trusted entity. Further assume that the user’s
computing device is executing several different business
applications that need a high degree of compatibility to keep
running properly. In context such as these, as Well as others, it
can be desirable to alloW the application to operate in an
unrestricted manner When executing in the context of the
company’s intranetithat is, in a manner that is unrestricted
by blocking mechanism 112.
As an example, consider FIG. 5 in connection With the

folloWing. There are certain contexts that an application may
attempt to execute in, and these contexts can pertain to a

US 7,792,964 B2
9

particular Zone that has been de?ned as being trusted or may
otherwise carry With it a level of security that has been de?ned
as “safe”. In the browser example, the user may attempt to
navigate to a corporate intranet or some other safe Zone. In
this case, restricted broWser 102 calls the broker mechanism
and the broker mechanism, based on the call that the appli
cation is making, can instantiate an unrestricted broWser 500
With Which the user can operate in the particular Zone to
Which they have navigated. In this example, a token is created
and con?gured to include the privileges associated With the
user (such as administrative privileges, poWer user privileges
and the like), as Well as a user name associated With the user
to provide the user With access to the appropriate portion of
the user space. This is also useful When launching third party
applications that my not be capable of running restricted.

In addition, in this embodiment, the containment Zone is
de?ned in a manner that maintains a separation betWeen the
restricted and unrestricted broWsers 102, 500 respectively.
Speci?cally, recall from the discussion above that a contain
ment Zone in the form of a Temporary Internet File folder is
provided into Which the restricted broWser 102 and other
components read and Write. Yet, in the present embodiment, if
the unrestricted broWser 500 Were to use this containment
Zone for Writing and reading temporary Internet ?les, there is
a chance that an exploited restricted broWser could access
Write data that Would be read by the unrestricted broWser 500
and executed at a higher privilege level, Which Would create
an elevation of privilege attack.

Accordingly, to address this situation, as Well as others,
different containment Zones are de?ned, one of Which being
associated With the restricted broWser 102, the other of Which
being associated With the unrestricted broWser 500 and iso
lated from the restricted broWser. In the illustrated example,
containment Zone 11011 is associated With anduseable only by
restricted broWser 102. LikeWise, containment Zone 1101) is
associated With and useable only by unrestricted broWser 500.
Neither broWser can read or Write to or from the other’s
associated containment Zone. As such, Wall 112 is seen to
extend doWn and block access from the restricted broWser 1 02
to containment Zone 1101).

In the implementation above in Which the token is pro
cessed and recon?gured, containment Zone 11011 is desig
nated as being able to be read from and Written to only by the
group identi?ed in the token. Hence, applications executing
in the context of this token cannot access containment Zone
11%.

Exemplary Use Scenarios
The folloWing use scenarios provide some additional

examples of hoW the above-described inventive embodiments
can be utiliZed in the context of a Web broWser.

Consider ?rst an example in Which the inventive embodi
ments can be utiliZed to protect the user. Assume that user
Abby visits a Website that exploits a buffer overrun in the
broWser to install a control. Here, Abby navigates to a page
that uses a buffer overrun exploit in the broWser to inject
native code into the process space. The native code doWn
loads a dynamic link library (DLL) into a folder on her
machine and attempts to register as an ActiveX control to be
loaded by the broWser by creating entries in the registry. Here,
hoWever, the operation fails because the broWser does not
have permission to Write to the registry. Abby then receives a
noti?cation and continues to broWse securely.
As another example, assume that userAbby visits a Website

that uses a control she has installed to attempt to overWrite a
system ?le. Here, Abby navigates to a page that contains an
already installed ActiveX control. The control attempts to
overWrite a DLL in her system folder. Here, hoWever, the
operation is rejected and Abby receives a noti?cation inform

20

25

35

40

45

50

55

60

65

10
ing her that the page attempted to perform a privileged opera
tion. She then continues to broWse securely.

Consider noW an example in Which the inventive embodi
ments can be utiliZed to maintain the compatibility of Abby’ s
system. Here, assume that Abby upgrades her video drivers
from a Website. Abby navigates to the Web site and clicks on
the link to the driver.exe ?le. The ?le is doWnloaded and the
executable install broker (i.e. the broker mechanism) prompts
Abby to ensure she trusts the executable and Wishes to install
it. If approved by Abby, the installation completes success
fully and Abby continues to broWse securely.
Assume noW that Abby visits her favorite Web site. A neW

menu control has been added, so the broWser needs to install
the control. Abby is prompted to ask if she trusts the control,
and to authorize the installation. If approved, the control
installs and Abby continues navigating the site and broWsing
securely.
Exemplary Computing System
FIG. 6 shoWs an exemplary computer system having com

ponents that can be used to implement one or more of the
embodiments described above.

Computer system 630 includes one or more processors or
processing units 632, a system memory 634, and a bus 636
that couples various system components including the system
memory 634 to processors 632. The bus 636 represents one or
more of any of several types of bus structures, including a
memory bus or memory controller, a peripheral bus, an accel
erated graphics port, and a processor or local bus using any of
a variety of bus architectures. The system memory 634
includes read only memory (ROM) 638 and random access
memory (RAM) 640. A basic input/output system (BIOS)
642, containing the basic routines that help to transfer infor
mation betWeen elements Within computer 630, such as dur
ing start-up, is stored in ROM 638.
Computer 630 further includes a hard disk drive 644 for

reading from and Writing to a hard disk (not shoWn), a mag
netic disk drive 646 for reading from and Writing to a remov
able magnetic disk 648, and an optical disk drive 650 for
reading from or Writing to a removable optical disk 652 such
as a CD ROM or other optical media. The hard disk drive 644,
magnetic disk drive 646, and optical disk drive 650 are con
nected to the bus 636 by an SCSI interface 654 or some other
appropriate interface. The drives and their associated com
puter-readable media provide nonvolatile storage of com
puter-readable instructions, data structures, program modules
and other data for computer 630. Although the exemplary
environment described herein employs a hard disk, a remov
able magnetic disk 648 and a removable optical disk 652, it
should be appreciated by those skilled in the art that other
types of computer-readable media Which can store data that is
accessible by a computer, such as magnetic cassettes, ?ash
memory cards, digital video disks, random access memories
(RAMs), read only memories (ROMs), and the like, may also
be used in the exemplary operating environment.
A number of program modules may be stored on the hard

disk 644, magnetic disk 648, optical disk 652, ROM 638, or
RAM 640, including an operating system 658, one or more
application programs 660, other program modules 662, and
program data 664. A user may enter commands and informa
tion into computer 630 through input devices such as a key
board 666 and a pointing device 668. Other input devices (not
shoWn) may include a microphone, joystick, game pad, sat
ellite dish, scanner, or the like. These and other input devices
are connected to the processing unit 632 through an interface
670 that is coupled to the bus 636. A monitor 672 or other type
of display device is also connected to the bus 636 via an
interface, such as a video adapter 674. In addition to the
monitor, personal computers typically include other periph
eral output devices (not shoWn) such as speakers and printers.

US 7,792,964 B2
11

Computer 63 0 commonly operates in a networked environ
ment using logical connections to one or more remote com
puters, such as a remote computer 676. The remote computer
676 may be another personal computer, a server, a router, a
network PC, a peer device or other common network node,
and typically includes many or all of the elements described
above relative to computer 630, although only a memory
storage device 678 has been illustrated in FIG. 6. The logical
connections depicted in FIG. 6 include a local area network
(LAN) 680 and a wide area network (WAN) 682. Such net
working environments are commonplace in o?ices, enter
prise-wide computer networks, intranets, and the Internet.
When used in a LAN networking environment, computer

630 is connected to the local network 680 through a network
interface or adapter 684. When used in a WAN networking
environment, computer 630 typically includes a modem 686
or other means for establishing communications over the
wide area network 682, such as the Internet. The modem 686,
which may be internal or external, is connected to the bus 636
via a serial port interface 656. In a networked environment,
program modules depicted relative to the personal computer
630, or portions thereof, may be stored in the remote memory
storage device. It will be appreciated that the network con
nections shown are exemplary and other means of establish
ing a communications link between the computers may be
used.

Generally, the data processors of computer 630 are pro
grammed by means of instructions stored at different times in
the various computer-readable storage media of the com
puter. Programs and operating systems are typically distrib
uted, for example, on ?oppy disks or CD-ROMs. From there,
they are installed or loaded into the secondary memory of a
computer. At execution, they are loaded at least partially into
the computer’s primary electronic memory. The invention
described herein includes these and other various types of
computer-readable storage media when such media contain
instructions or programs for implementing the steps
described below in conjunction with a microprocessor or
other data processor. The invention also includes the com
puter itself when programmed according to the methods and
techniques described below.

For purposes of illustration, programs and other executable
program components such as the operating system are illus
trated herein as discrete blocks, although it is recogniZed that
such programs and components reside at various times in
different storage components of the computer, and are
executed by the data processor(s) of the computer.

CONCLUSION

The embodiments described above can reduce the security
risks associated with applications that have access to the
Internet, while at the same provide users with safe, rich expe
riences.

Although the invention has been described in language
speci?c to structural features and/or methodological steps, it
is to be understood that the invention de?ned in the appended
claims is not necessarily limited to the speci?c features or
steps described. Rather, the speci?c features and steps are
disclosed as preferred forms of implementing the claimed
invention.

The invention claimed is:
1. A computer-implemented method comprising:
blocking, with a blocking mechanism, Internet-application

access to administrative and/or user spaces of a client
computing device on which the Internet-application
executes;

20

25

30

35

40

45

50

55

60

65

12
de?ning at least one containment Zone in which said Inter

net-application is to write and read data;
providing an administrative broker object that is con?g

ured to broker access to the administrative space that is
blocked, and a user broker object that is con?gured to
broker access to the user space that is blocked, wherein
the administrative broker object and the user broker
object are task-based, at least one of the administrative
broker object or the user broker object having a lifetime
de?ned by a task;

executing at least the administrative broker object or the
user broker object in a separate process than the Intemet
application;

inspecting a request from the Internet-application to access
at least one of said administrative space or said user
space by con?rming that the request is valid and by
checking an electronic signature of the Internet-applica
tion, the request to access said administrative space
being inspected by the administrative broker object and
the request to access said user space being inspected by
the user broker object;

modifying at least one of said administrative space with the
administrative broker object or said user space with the
user broker object for said Internet-application in
response to receiving a con?rmation of credentials;

brokering access to at least one of said administrative space
with the administrative broker object or said user space
with the user broker object for said Internet-application
by forcing certain tasks to be called in a de?ned order to
accomplish a desired action, the de?ned order of calls
comprising parameters that are cached in the adminis
trative broker object or the user broker object and later
compared with subsequently received parameters,
wherein access is brokered only for matching param
eters; and

if compared parameters do not match, maintaining blocked
access to said administrative and/or user spaces for said
Internet-application.

2. The method of claim 1 further comprising brokering
access to said administrative and/ or user spaces for other third
party extensions associated with the Internet-application.

3. The method of claim 1 further comprising brokering
access to said administrative and/ or user spaces for other third
party extensions associated with the Internet-application,
wherein said act of brokering comprises prompting a user to
ascertain whether the user wishes to access said de?ned

spaces.
4. The method of claim 1 further comprising brokering

access to said administrative and/ or user spaces for other third
party extensions associated with the Internet-application,
wherein said third party extensions execute in the Intemet
application’s process.

5. The method of claim 1, wherein said act of brokering
comprises prompting the user to ascertain whether the user
wishes to access said de?ned spaces.

6. The method of claim 1, wherein said desired action
comprises saving data.

7. The method of claim 1, wherein at least one call requires
a user’s interaction.

8. A computer-implemented method comprising:
blocking, with a blocking mechanism, Internet-application

access to administrative and/or user spaces of a client
computing device on which the Internet-application
executes;

de?ning at least one containment Zone in which said Inter
net-application is to write and read data;

US 7,792,964 B2
13

providing an administrative broker object that is con?g
ured to broker access to the administrative space that is
blocked, and a user broker object that is con?gured to
broker access to the user space that is blocked;

executing at least the administrative broker object or the
user broker object in a separate process than the lntemet
application;

inspecting a request from the Internet-application to access
the blocked administrative space and/or blocked user
space by checking an electronic signature of the Inter
net-application and by con?rming that the request is
valid, the inspecting being performed by the admini stra
tive broker object and/ or a user broker object;

modifying said administrative space With the administra
tive broker object or said user space With the user broker
object for said lntemet-application in response to receiv
ing a con?rmation of credentials;

brokering access to the blocked administrative space With
the administrative broker object at least by modifying
the blocked administrative space With the administrative
broker object;

brokering access to the blocked user space With the user
broker object, at least in part, by modifying the blocked

14
user space With the user broker object, Wherein the user
broker object and the administrative broker object are
con?gured to be task-based, at least one of the adminis
trative broker object or the user broker object having a
lifetime de?ned by a task;

shimming data that is attempted to be Written to said
administrative and/ or user spaces by entities other than
the Internet-application;

shimming data that is attempted to be Written to said
administrative and/ or user spaces by said Internet-appli
cation, Wherein such data only comprises data not rec
ogniZed as a basic part of the lntemet-application; and

retrieving shimmed data from the containment Zone in
response to calls by the lntemet-application for the
shimmed data.

9. The method of claim 8, Wherein said lntemet-applica
tion comprises a broWser.

10. The method of claim 8, Wherein said lntemet-applica
20 tion comprises a broWser, and Wherein said entities comprise

third party extensions to the broWser.

